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Introduction: The Asteroid Impact and Deflec-
tion Assessment (AIDA) collaboration, consisting
of NASA’s DART mission and ESA’s Hera mission,
aims to test the capability of a kinetic impactor to
deflect an asteroid [1]. At the end of September
2022, DART successfully impacted the secondary
of the binary asteroid system Didymos, called Di-
morphos. Hera will launch in 2024 and aims to
characterize the physical properties of Didymos
and Dimorphos, and investigate the consequence
of the impact made by DART in more detail. The
close proximity operations of Hera consist of sev-
eral different phases, each one having different sci-
entific and technical requirements. The final nom-
inal phase is the experimental phase, where the
highest resolution images of the impact crater will
be taken. As during this phase the closest fly-bys
of Dimorphos will take place at around 100 me-
ters from the body, it is important to ensure the
safety of the spacecraft and minimise the risk of
impact. Therefore, the trajectory design of these
fly-bys needs to consider the possible execution
errors of the ∆V maneuvers and the uncertainties
in the dynamical system, e.g. the mass of Dimor-
phos.

Currently, this process is subdivided between a
trajectory design step and a navigation analysis
step, where first a nominal trajectory is designed
and afterwards the performance when uncertain-
ties and execution errors are included is inves-
tigated [2]. This process can be inefficient and
possibly result in sub-optimal designs with over-
conservative margins. Therefore, various tech-
niques have been proposed to try and combine
these two steps into one [3].

Various previous works have focused on robust
trajectory design for asteroid missions. In [4], a
soft landing trajectory was found using a robust
optimization technique where the landing area dis-
persion was minimised. Similarly, [5] designed a
landing trajectory using a reliability assessment in-
volving a Monte Carlo analysis. These approaches
use either linearization or Monte Carlo methods to
propagate the uncertainties. As the uncertainties
can be quite large in this case, the linearization
technique is not accurate enough. A Monte Carlo

approach is more accurate, but as the inclusion of
a navigation analysis in the trajectory design pro-
cess requires a lot of samples to be propagated,
this can become inefficient.

More efficient uncertainty propagation (UP)
methods have also been investigated. In [6] an
Unscented Transform was used to propagate the
first two moments of normally distributed state
variables and design a robust guidance policy.
The authors of [7] and [8] applied polynomial
algebra based UP techniques to general trajectory
optimization problems. Additionally, [9] expanded
these approaches to also include the navigation
and control systems and used a sparse-grid
interpolation approach to perform the UP.

This work applies these techniques to the prob-
lem of the design of the very-close fly-bys (VCFB)
of asteroid Dimorphos for the Hera mission, com-
bining the trajectory design and navigation assess-
ment to produce more robust solutions. To the au-
thors knowledge, this is the first time this technique
has been applied in an asteroid scenario, where
uncertainties can play a major role.

Very-Close Fly-By: The final nominal close-
proximity operations phase of Hera is the experi-
mental phase (EXP). The main goal of the EXP is
the detailed characterization of the crater made by
the DART impact. It consists of three hyperbolic
arcs: one incoming arc, one fly-by arc, and one
outgoing arc connecting again to the start of the
incoming arc. During the fly-by arc, also known as
the very-close fly-by (VCFB), the spacecraft will try
to image the crater at a resolution of less than 10
cm/pixel with proper lighting conditions. The light-
ing conditions for a successful observation are re-
quired to be:

1. Spacecraft elevation angle (ϵs/c) between 20
and 70 degrees.

2. Sun elevation angle (ϵ⊙) between 25 and 75
degrees.

3. Phase angle (ϕ) between 5 and 90 degrees.

These angles are defined in figure 1, where ˆ⃗nc is
the crater normal, r⃗s/c the spacecraft position with
respect to the crater, and r⃗⊙ the position of the Sun
with respect to the crater. An important operational
requirement is to have a certain velocity margin C,
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i.e. an excess velocity above the escape velocity
vesc, during the full VCFB, which is defined as:

Vs/c = (1 + C)

√
2µ

r
= (1 + C)vesc. (1)

Here, the value required for C is 0.4 or above, i.e.
the velocity is always 1.4 times the escape velocity.
This is to ensure that if a thruster failure or missed
thrust event happens, the spacecraft will escape
the system on a collision free trajectory.

Figure 1: Definition of the various angles that
influence the lighting conditions during close
approach.

During the VCFB, there are three ∆V maneu-
vers: the first one is full open-loop (i.e. ground
commanded) to get on the VCFB from the incom-
ing arc, and the second and third one are a com-
bined open-loop and closed-loop maneuver to de-
crease the perigee sequentially and correct for off-
nominal conditions. The open-loop commands are
calculated using two-body based hyperbolic orbits.
First, a sequence of perigee distances are se-
lected, in this case: rp = {4, 3, 1.5} km. From
that, a set of combinations of possible hyperbolic
orbits which fulfill the condition ri(tf ) = rj(t0) and
Ci ≥ 0.4 are determined, where t0 and tf are var-
ied for each arc to find the optimal combination,
where the total flight time of all three arcs is 1.5
days. From this analysis the following sequence
was determined: C = {1.8, 0.8, 0.4}. An inclina-
tion is also added to the arcs, to make sure that
the chance of Didymos blocking the view of Di-
morphos is minimized to allow for navigation rel-
ative to Dimorphos. The resulting trajectory (prop-
agated using the full dynamical setup, i.e. two point
mass gravity models and Solar radiation pressure)
is shown in figure 2.

To make sure that the observation of the crater
for this nominal trajectory is successful, the various
lighting angles are plotted in figure 3. During close
approach all the necessary conditions are met for
a successful observation of the DART crater for the
nominal case.

Figure 2: The nominal trajectory for the VCFB.

Figure 3: Evolution of lighting and observabil-
ity parameters during the nominal VCFB tra-
jectory. The vertical dashed lines are the ∆
V epochs, the grey area is the region of suc-
cessful observation, and the cross is the close-
approach.

The closed-loop maneuvers are used to bring the
true trajectory to the nominal trajectory. A sim-
ple linear targeting approach is used, which calcu-
lates the maneuver using the linearized dynamics
around the nominal trajectory given by Φ as fol-
lows:
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δr⃗f

δv⃗f

 = Φ

 δr⃗0

δv⃗0 + δ∆v⃗0

 (2)

=

Φ1,1 Φ1,2

Φ2,1 Φ2,2

 δr⃗0

δv⃗0 + δ∆v⃗0

 , (3)

where δr⃗ and δv⃗ are the changes in position and
velocity with respect to the nominal values, and
δ∆v⃗0 is the closed-loop maneuver. Eq. (3) can
then be inverted to obtain δ∆v⃗0:

δ∆v⃗0 = −Φ−1
1,2

(
Φ1,1 Φ1,2

)δr⃗0

δv⃗0

 (4)

This linear targeting controller requires an esti-
mate of the state at the time of ∆V execution.
This estimate comes from the navigation system
of Hera which uses images of Dimorphos to mea-
sure its relative state. Observables like the centre
of brightness are extracted from these images and
fed into a navigation filter to obtain an estimate of
the position and velocity together with their covari-
ance, also known as the estimation knowledge. In
this work, an analytical expression for the evolu-
tion of the knowledge covariance is given instead
of a full measurement and filter simulation. This
is to reduce the complexity of the implementation
and improve the numerical efficiency when imple-
mented in a trajectory optimization context. The
analytical model is given as follows:

σ⃗r̃ =


σ⃗0,r̃ + ϵ⃗∆V · (t− t∆V ) t < t1

(σ⃗0,r̃ + ϵ⃗∆V · (t− t∆V )) · e−(t−t1)/τ t1 ≤ t < t2

σ⃗ss,r̃ t2 ≤ t

(5)

σ⃗ṽ =


σ⃗0,ṽ + ϵ⃗∆V t < t1

(σ⃗0,ṽ + ϵ⃗∆V ) · e−(t−t1)/τ t1 ≤ t < t3

σ⃗ss,ṽ = σ⃗ss,r̃/τ t3 ≤ t

, (6)

where σ are the standard deviations, σ0 the stan-
dard deviations at the start of the current arc,
ϵ⃗∆V = 2.5% ·∆v⃗ the expected error in the maneu-
ver, t∆V is the time of the previous maneuver, τ the
characteristic time of the optical navigation equal to
a sixth of the orbital period of Dimorphos (T ), and
t1 = T/10. The navigation reaches a steady-state
error after a certain amount of time, which is calcu-
lated as follows:

σss,r̃ =

√(
R

5

)2

+ σ2
ephem, (7)

where R is the radius of Dimorphos and σephem

is the error in the ephemeris of Dimorphos, esti-
mated to be 10 meters at the time of the VCFB.
The time of steady-state is calculated using the fol-
lowing equation:

(σ⃗0,v + ϵ⃗∆V ) · e−(t2/3−t1)/τ = σss,r/v. (8)

Uncertainty Propagation: For the design of
the VCFB trajectory, there are several sources of
uncertainties and errors that need to be taken into
account. First, the initial state of the spacecraft at
the start of the VCFB will be uncertain due to ex-
ecution errors from previous maneuvers to get to
that point. Second, the commanded ∆V will not
be exactly the same as the executed ∆V due to
imperfect pointing and thruster performance. Fi-
nally, the knowledge of the state required for the
linear targeting controller is not perfect, making the
executed ∆V different from the desired one corre-
sponding to the true state of the spacecraft. These
uncertainties are summarised in table 1

Source Magnitude (1-σ)

Initial position dispersion 700 m

Initial velocity dispersion 10 mm/s

Initial position knowledge 100 m

Initial velocity knowledge 0.5 mm/s

∆V magnitude 0.33 %

∆V angle 1.0◦

Table 1: Uncertainties considered for the VCFB

To analyse the effects of these uncertainties, they
need to be propagated through the system. Con-
sider an initial value problem defined as follows:{

˙⃗x = f⃗(x⃗(t), β⃗, t)

x⃗(t0) = x⃗0

(9)

where t is the time, x⃗ is the state vector, and β⃗
is a vector containing the model parameters (e.g.
the ∆V parameters). Consider a set of N realisa-
tion from the uncertainties: [x⃗0,1, β⃗1, ..., x⃗0,N , β⃗N ].
Each sample is propagated through Eq.(9) un-
til time tf , which results in a set of trajectories
x⃗i(tf ) = ϕi(x⃗0,i, β⃗i, tf ). The set representing all
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possible trajectories at time t from the realisations
of the uncertainty vector ξ⃗ = [x⃗0, β⃗] is defined as:

Ωt(ξ⃗) = {x⃗(t) = ϕ(ξ⃗, t) | ξ⃗ ∈ Ωξ⃗}. (10)

To understand the effect of the uncertainties and
propagate them efficiently, an analytical expres-
sion of this set needs to be obtained. If x⃗t is con-
tinuous in ξ⃗ and the set is compact, Ωt(ξ⃗) can be
approximated using a polynomial function:

Ω̃t(ξ⃗) = Pn,d(ξ⃗) =

N∑
i=0

ci(t)αi(ξ⃗), (11)

where αi(ξ⃗) are a set of multivariate polynomial
basis functions, ci(t) are the corresponding coeffi-
cients, and N =

(
n+d
d

)
is the number of terms of

the polynomial, where n is the degree of the poly-
nomial and d is the number of variables. A polyno-
mial approximation is used as it is efficient to evalu-
ate and can be made more accurate by increasing
its degree n.

Chebyshev polynomials are often used as basis
functions for approximation purposes as they have
several attractive numerical properties [10]. These
polynomials have been previously used in an as-
trodynamics setting as well in [11] and [12]. This
work follows a similar approach as [11] and [9], and
uses a Chebyshev polynomial basis together with
a Smolyak sparse grid sampling approach to ob-
tain the polynomial from Eq. (11), which is here-
after called the non-intrusive Chebyshev Interpola-
tion (NCI) method. As a Chebyshev basis has a
finite support and the uncertainties in table 1 are
assumed normally distributed, i.e. infinite support,
the range of the uncertainties is bounded to ±4−σ
to allow for the use of Chebyshev polynomials.

The Smolyak sparse grid was developed in [13],
and selects a set of points based on the extrema
of Chebyshev polynomials. An important aspect is
that they do not suffer the curse of dimensionality,
as the number of points grow polynomially with the
dimension of the problem instead of exponentially.
A more in depth explanation of this method for un-
certainty propagation is given in [11].

Given the propagated samples, the coefficients
of the polynomial can be obtained by inverting the
following system:

HC = Y, (12)

where:

H =


Ti1(ξ⃗1) . . . Tis(ξ⃗1)

...
. . .

...

Ti1(ξ⃗s) . . . Tis(ξ⃗s)

 , C =


ci1
...

cis

 , Y =


y1
...

ys


(13)

where s = N =
(
n+d
d

)
, ξ⃗1, . . . , ξ⃗s are the Smolyak

sparse grid points, and Y the vector containing
all the corresponding propagated samples yi =

ϕi(ξ⃗i, t).
Concluding, instead of propagating a large num-

ber of samples using a Monte Carlo like approach
to obtain the distribution at a later point in time, a
polynomial expansion of the dynamics is first con-
structed using a small number of points. The de-
sired samples for the trajectory design and naviga-
tion analysis process can then be propagated by
evaluating the polynomial in Eq. (11). These two
steps combined are much more efficient compared
to just propagating all desired samples numerically
in a Monte Carlo like fashion [14] [9].

The polynomial expansion in a Chebyshev ba-
sis represents all possible trajectories originating
from the uncertainties, and does not assume any
specific probability distribution. The propagation of
Normally distributed variables in general requires
integrating the following types of equation:

1/
√

πd|Σ|
∫ ∞

−∞
e−

1
2 (x⃗−µ⃗)TΣ−1(x⃗−µ⃗)f(x⃗)dx⃗, (14)

where µ⃗ are the means and Σ the covariance ma-
trix. f(x⃗) can be various functions, e.g. f(x⃗) = x⃗
for the mean and f(x⃗) = (x⃗ − µ⃗)T (x⃗ − µ⃗) for the
covariance. These integrals can be solved nu-
merically using Gauss-Hermite quadrature and a
change of variables (x⃗ =

√
2Ly⃗ + µ⃗, where Σ =

LLT and L is determined using Cholesky decom-
position), as follows [10]:

1/
√
πd

∫ ∞

−∞
e−y⃗T y⃗f(

√
2Ly⃗ + µ⃗)dy⃗ (15)

≈
N∑
i=0

wi√
πd

f(
√
2Lζ⃗i + µ⃗), (16)

where wi are the Gauss-Hermite weights and ζi
the roots of the Hermite polynomial. The accuracy
of the integration can be tuned by increasing the
number of quadrature points. In case of propa-
gating a set of Gaussian variables, e.g. the state
knowledge, from time tk to tk+1, a large number of
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quadrature samples would need to be numerically
integrated. However, as a polynomial approxima-
tion is used, instead of a numerical integration only
a polynomial evaluation is needed for each quadra-
ture point, significantly reducing the computation
time. For example, the mean of the state at time
tk+1 can be calculated as follows:

µx⃗k+1
≈

N∑
i=0

wi√
πd

Ω̃tk+1
(
√
2Lζ⃗i + µ⃗). (17)

Normally, the multivariate quadrature points are
constructed as a Cartesian products of univariate
ones. This method suffers from the curse of di-
mensionality in d, thus here a similar approach to
the NCI method is used where a sparse grid is con-
structed instead.

Robust Trajectory Optimization: To design a
trajectory that is robust against the uncertainties
presented before, a trajectory optimization scheme
needs to be used that implements the informa-
tion on the distribution of these uncertainties. This
means that the optimal control problem that is often
used in the deterministic case needs to be adapted
to objective and constraint functions that are de-
pendent on the distribution of the variables. In this
work, the specific methods described in [8] and [9]
are adapted and applied to the case of the VCFB
of Hera.

The steps of the method implemented here are
graphically described in figure 4. In this section,
these steps are described in more detail.
1. The initial dispersion in position and velocity
from table 1 is used as an input for the NCI method
to generate a polynomial mapping from the initial
VCFB point in time t0 to the time of the first ∆V
maneuver t∆V1

, see eq. (11).
2. A set of observations are randomly generated at
time t0. The evolution of the knowledge covariance
from t0 to t∆V1 for these observations is simulated
using Eqs. (5) and (6).
3. Using Eq. 3, for each observation the closed-
loop ∆V is calculated using the propagated sam-
ples of 2. The total control is then calculated as
follows:

∆V⃗ = ∆V⃗OL + δ∆v⃗ + ⃗ϵ∆V , (18)

where ∆V⃗OL is the nominal pre-computed open-
loop ∆V and ⃗ϵ∆V is the stochastic execution error
of the maneuver. The distributions in states from
the sample observations, together with all the cal-
culated ∆V⃗ are used to define the new bounds at
t∆V1 , which is then propagated to t∆V2 using the

NCI method.
4. The observations and their distributions at t∆V1

are then propagated to t∆V2 using the polynomial
based Hermite-Gauss quadrature of eq. (17). This
does not represent the state knowledge distribu-
tion, but the actual dispersion of states, as the cal-
culated ∆V⃗ from the mean is applied to all realisa-
tions within the knowledge distribution.
5. All dispersion distributions at time t∆V2 are
combined into one distribution by resampling (grey
samples in figure 4) from all the different distribu-
tions and calculating the new mean and covari-
ance.
6. The navigation process is again simulated using
Eqs. (5) and (6) up until t∆V2 to obtain the knowl-
edge distribution at that point in time.
7. As in step 3, the control is again calculated
using both the pre-determined open-loop and au-
tonomous closed-loop ∆V , and applied to the full
region of the knowledge distribution.
8. As in step 4, the distributions are propagated
using the quadrature method up until the time of
close-approach tC/A.
9. At close approach the various objective and
constraint functions are evaluated, which are then
given to the optimization algorithm to calculate the
next set of decision variables. From this point, if
the optimization has not converged, the process
will start again using the new decision variables.

The robust optimization problem considered here
is formulated as follows:

min
u⃗

|diag(ΣC/A)|, (19)

s.t. x⃗k+1 = Ω̃tk+1
(ξ⃗k), k = 0, 1, 2 (20)

E[x⃗C/A] ∈ Xnom (21)
Pr(C ≥ 0.4) > 99.7% (22)
PoI < 0.1% (23)
E[rf ] > 10km (24)

With this setup, the main goal is to desensitize
the trajectory against uncertainties, i.e. to make
the covariance during close-approach small while
still being close to the nominal trajectory. The ob-
jective’s goal, (19), is thus to minimize the norm
of the covariance diagonal at close-approach, as-
suming these are the main terms contributing to
the overall dispersion. The decision variables are
the open-loop ∆V⃗ , the initial state x⃗0, and the
times of the two maneuvers: t∆V1 and t∆V2 . Con-
straint (21) tries to ensure that the mean of the
close-approach distribution remains close to the
nominal state (within Xnom, which is a sphere cen-



IAA-PDC-23-02-42
8th IAA Planetary Defense Conference – PDC 2023

3–7 April 2023, Vienna, Austria 6

Figure 4: Diagram explaining the steps required for the transcription of the problem.

tered around the nominal trajectory with a radius of
500 meters). Constraints (22) and (23) make sure
that the trajectory flown is still safe by ensuring a
3σ probability of having a velocity margin above the
constraints and minimizing the probability of im-
pact. Finally, constraint (24) makes sure that the
spacecraft is far away enough from the system at
the end of the third arc to allow it to safely return to
a safe point far from the asteroids. The problem is
solved by the WORHP solver from the Pagmo opti-
mization package [15], using the nominal trajectory
as an initial guess.

Conclusion: This research designs a robust
trajectory for the very-close fly-by of the Hera mis-
sion during its final experimental phase. A novel
method is used which combines the nominal tra-
jectory design with the navigation assessment us-
ing a non-intrusive uncertainty propagation tech-
nique. This method is shown to be sufficiently ef-
ficient to be able to be used inside an optimization
problem. This problem is thus able to solve for ob-
jective functions and constraints that are a function
of the probability distribution of the variables. The
found trajectory is less sensitive to the uncertain-
ties and fulfills all safety constraints, without need-
ing to perform additional navigation analyses.
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