

the Light Italian Cubesat for Imaging of Asteroids

Elisabetta Dotto (INAF-OAR) on behalf of the LICIACube Team

PDC- April 2021

The LICIACube team:

INAF:	E. Dotto (Science Team Lead)					
	V. Della Corte (Instrument Team Lead)					
	E. Mazzotta Epifani (WP Observations Lead), S. Ieva, D. Perna					
	J.R. Brucato (WP Laboratory experiments Lead), A. Meneghin, G. Poggiali					
	S. Ivanovski (WP Ejecta Lead)					
	A. Lucchetti (WP Impact Simulation Lead), G. Cremonese, E. Simioni					
	M. Pajola (WP Proximity Lead)					
IFAC-CNR:	A. Rossi (WP Dynamics Lead)					
Politecnico Milano:	M. Lavagna (WP Mission Analysis Lead), A. Capannolo, G. Zanotti					
Univ. Bologna:	M. Zannoni (WP Orbit determination Lead), P. Tortora, D. Modenini, I. Gai					
Univ. Parthenope:	P. Palumbo, I. Bertini,					
Argotec:	V. Di Tana (Argotec Program Manager), S. Simonetti (System Engineer),					
	B. Cotugno, F. Miglioretti					
ASI:	S. Pirrotta (Program Manager), M. Amoroso, G. Impresario,					
ASI SSDC:	A. Zinzi (SOC Lead)					

Agenzia Spaziale Italiana

argotec

1Sİ

POLITECNICO DI MILANO

Aerospace Science and Technology Department

ALMA MATER STUDIORUM Università di Bologna

โเรกะ

+ INAF BITUTO MAZIONALE MATCHANE

Orbit: Heliocentric (~10M km from the Earth)

Mass: 14 kg

Volume: 6U+

366 mm x 239 mm x 116.2 mm (stowed) 911.5 mm x 366 mm x 239 mm (deployed)

	Focal length	FoV	IFoV	Spat. scale at
	(mm)	(°)	(µrad/px)	55.2km (m/px)
LEIA	220	± 2.06	25	1.38
LUKE	70.55	±5	78	4.31

LEIA: a catadioptric camera spatial scale at C/A (~55km) 1.38 m/px

LUKE: a camera with a RGB Bayer pattern filter

LICIACube is carried by DART until close to Didymos and then released to perform a fly-by of Dimorphos after DART impact.

LICIACube downlinks images directly to Earth after the target fly-by.

E. Dotto and the LICIACube team

LICIACube performs maneuvers and acquires pictures of Dimorphos and plume generated by the DART spacecraft impact

C LICIA Lytit Rolan Cubesat for Imaging of Asteroids

LICIACube acquisition strategy

Phase	Start	End	LEIA	LUKE
1 – DART Impact	-45 s to T0	T0+136.11 s	yes	Not operative
2 - Ejecta Observation	-25 s to T0	T0 + 169.1 s	yes	yes
3 - High resolution (surface properties/crater) observation	T0 + 157.5 s	T0 + 169.1 s	yes	yes
4 – Non-impact hemisphere observation	T0 + 165.41s	T0 + 179.1 s	yes	yes
5 – Plume evolution in forward scattering	T0 + 179.1 s	T0 + 600 s	yes	yes

Scientific Objectives

Ground Segment

The mission Ground Segment architecture includes DSN antennas and the two main elements located in Italy:

- Mission Control Center (MCC): @ Argotec (Turin)
- Science Control Center (SOC): @ ASI SSDC (Rome) <u>https://www.ssdc.asi.it/liciacube/</u>
- The raw data, coming from MCC, will be calibrated by SOC, using the calibration procedure provided by INAF.
- A PDS4 archive will be designed, populated and released to the public after the end of the mission.
- Data will also be accessible (first of all to the team and in a second time to public) by means of the SSDC MATISSE webtool (<u>https://tools.ssdc.asi.it/Matisse</u>), with advanced 2D and 3D visualization capabilities.

Status of the Project

- Qualification test campaign at Cubesat level in progress:
 - Full functional test succesfully completed;
 - TVAC test succesfully completed;
- Integration into the dispenser, expected on 12th May
- Qualification and Acceptance test campaign at System level (cubesat + dispenser + EBC)
 - Vibrations test
 - Deployment test
 - Thermal balance test
- Readiness of the System, expected on mid June
- Reviews and logistics
- Delivery to APL in Baltimore, expected on 23rd July

LICIACube spacecraft in TVAC chamber, after test

the Light Italian Cubesat for Imaging of Asteroids

Elisabetta Dotto (INAF-OAR) on behalf of the LICIACube Team

PDC- April 2021

