The VenSpec suite on the ESA Envision mission – a holistic investigation of the coupled surface atmosphere system of Venus

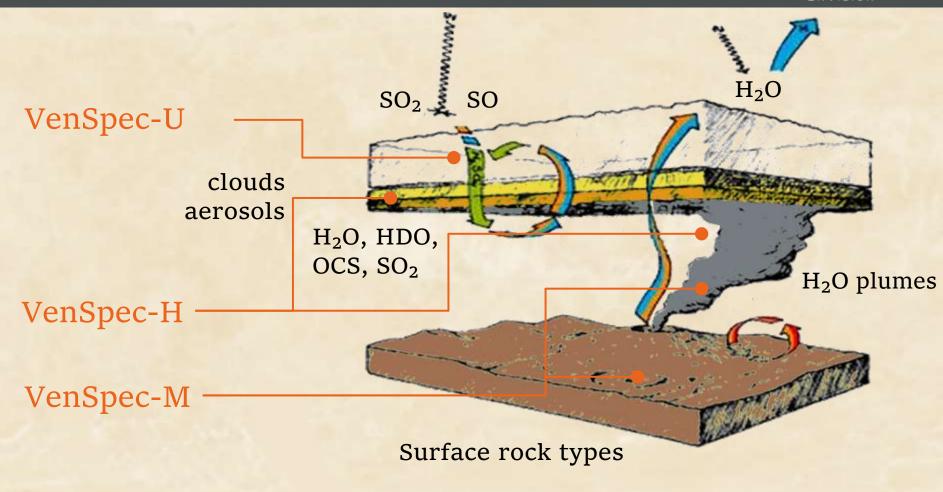
¹ Jörn Helbert, ²Ann-Carine Vandale, ³Emmanuel Marcq, ⁴P. Tackley, ⁵P. Machado, ⁶M. Min, ⁷M. Ferus, ⁸S. Vinatier, ⁹J. Lasue, ¹⁰Luisa M. Lara, ¹Giulia Alemanno, ²Justin Erwin, ²Eddy Neefs, ²Séverine Robert, ²Roderic De Cock, ³Sandrine Bertran, ³Benjamin Lustrement, ¹Steve Rockstein, ¹Martin Pertenais, ¹Gisbert Peter, ¹Friederike Wolff, ¹Simone Del Togno, ¹⁰Jose M. Castro **and the VenSpec Science Team**

¹DLR, Germany joern.helbert@dlr.de,²BIRA-IASB, Belgium, ³LATMOS, France, ⁴ETH, Switzerland, ⁵OAL, Portugal, ⁶SRON, Netherlands, ⁷Czech Academy of Science, Czech Republic, ⁸LESIA, France, ⁹IRAP, France, ¹⁰IAA-CSIC, Spain

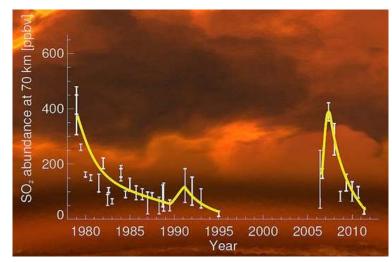
VenSpec Consortium

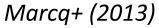
Coordinator: Jörn Helbert

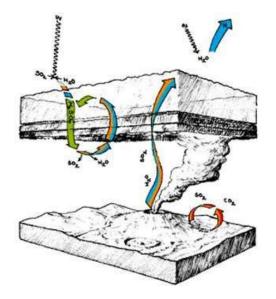
consists of three sub-instruments with a joint science team


VenSpec – H High spectral resolution IR Synthetic	VenSpec – M Multi-spectral IR imager	VenSpec – U UV Spectrometer	PHU – Power Handling Unit (IAA		
CCU - Central Control Unit (DLR)					
BELSPO	DLR	CNES	DHU – Data Handling Unit (MPI, IDA Germany)		
PI: Ann Carine Vandaele	Pl: Jörn Helbert	PI: Emmanuel Marcq			

EnVision Science Observations: VenSpec Suite

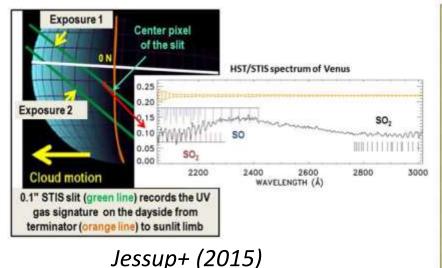


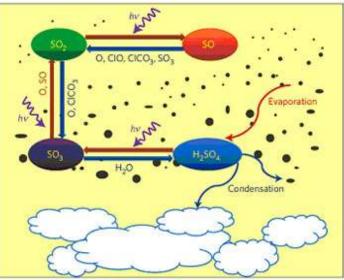




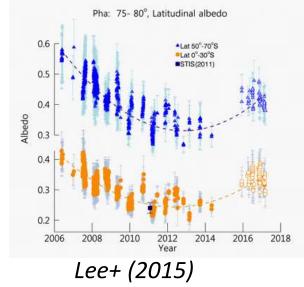
Goal #1: mapping cloud top SO₂

- Strong variability, yet poorly understood
 - Source: mixing with deep atmospheric reservoir
 - Sink: photochemistry
- Is SO₂ variability linked with surface (volcanism, orography) or of purely atmospheric origin?

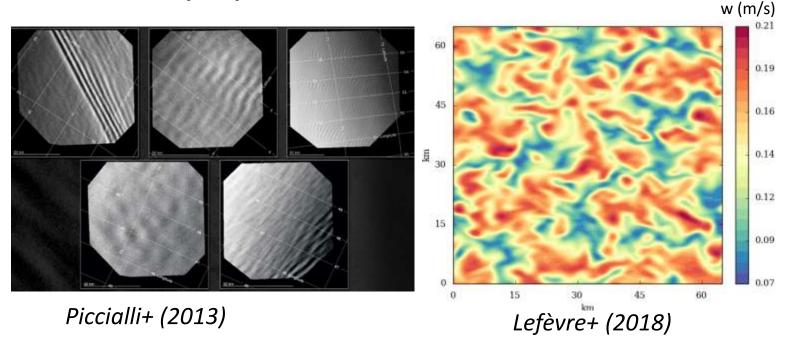


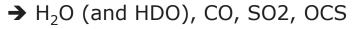


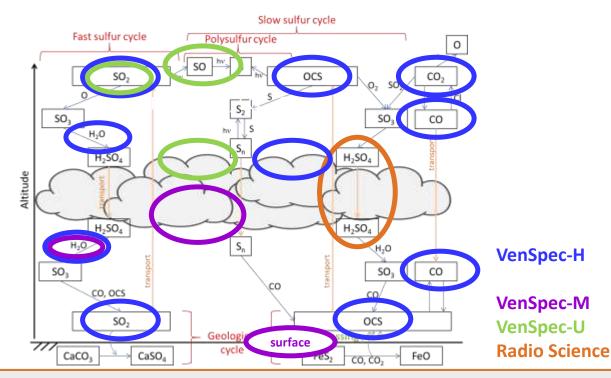
Goal #2: mapping SO:SO₂ ratio


- Poorly constrained yet (as of 2023)
- Important to characterize SO₂ photochemical sink

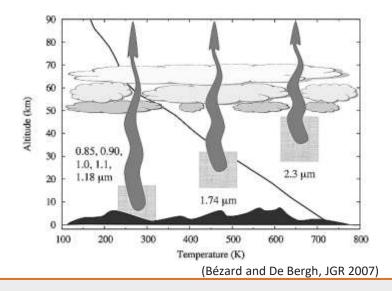
Goal #3: monitoring and mapping UV absorber


- Likely linked to sulfur cycle, yet still unidentified!
- Good tracer of atmospheric activity
- Comparison with existing 365 nm datasets (VMC/VEx, UVI/VCO)


Goal #4: high spatial resolution

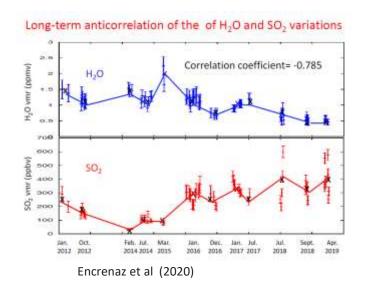

- UV contrasts down to <10 km: what about SO₂?
- Cloud top convection cells, atmospheric waves
- Constrain mesoscale/LES coupled chemistry/dynamics models

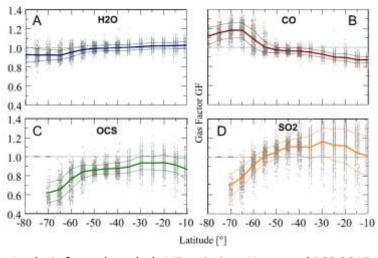
Obj #1: Better characterize the water and sulfur cycles


Need to measure key species of the water and sulfur cycles below and above the clouds

Obj #2: Search for volcanism and surface changes

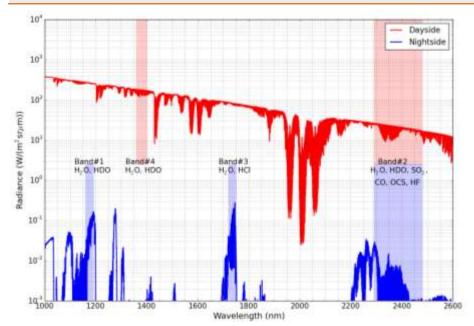
- Volcanic gases close to the surface
- Need to look through the clouds down to the surface
 - Infrared spectral bands in the 'Atmospheric transparent windows'
 - Only during the night




Obj #3: Impact on climate

Observation of

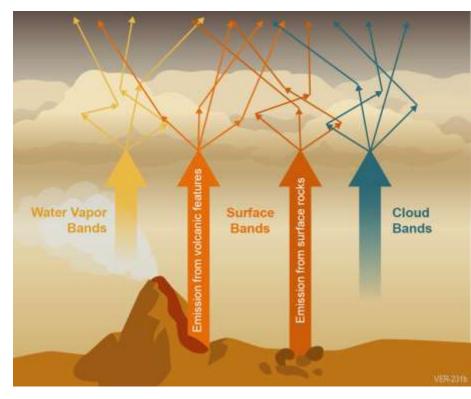
- Short- and long-term trends
- Spatial and temporal variability



Analysis from the whole VEx mission: Haus et al PSS 2015

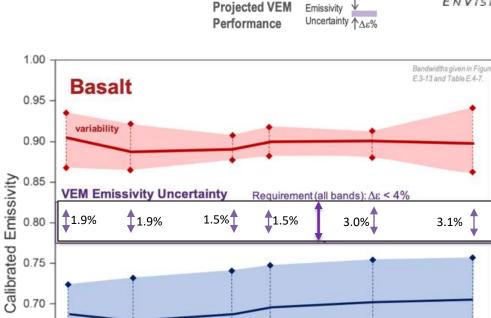
Summary

- Water and sulfur cycle
 → H₂O/HDO, SO₂, OCS, other trace gases
- Linked to volcanism other geological processes
- → Below the clouds, down to the surface
- Impact on climate
 from the surface to above the clouds, variability


	Band#1	1.17 μm	H ₂ O, HDO	0-15km	Near-surface water contents
NIGHTSIDE	Band#2ab	2.4 μm	H ₂ O, HDO, CO, OCS, SO ₂	30-40km	Minor species in the troposphere
NIG	Band#3	1.7 μm	H ₂ O, HCl	15-30km	Water contents in the middle of the troposphere
AYSIDE	Band#2ab	2.4 μm	H ₂ O, HDO, CO, OCS, SO ₂	65-80km	Minor species in the mesosphere
A	Dand#4	1.20.000			Water contents in the mesosphere

VenSpec-M maps the surface at the resolution limit

- VenSpec-M is a 14 band multispectral imager
- VenSpec-M will provide
 - a global map of rock types on the surface
 - monitor for active volcanism by its heat signature and by the enhancement of water vapor in a volcanic plume
 - study change within the mission and in comparison to VERITAS and VenusExpress


VenSpec-M and VEM will create the first "global" rock type map of Venus

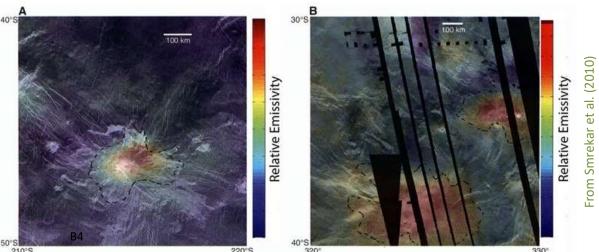
- Already now we are (most likely) capable to ٠ identify intermediate compositions like dacites, etc
- The smaller our uncertainty gets the better ٠ our rock type mapping gets
- So in combining the datasets between ٠ VERITAS and Envision we can derive more details in the surface composition

Calibrated

But what if the surface changes between **VERITAS and Envision??**

See presentations by Maturilli, Dyar and Alemanno tomorrow!

0.75 -0.70 0.65 -Variability of Examined Laboratory Samples Rhyolites 0.60 -Std. dev. of Average of & Granites all samples all samples 0.55 -0.85 0.90 0.95 1.10 1.15 1.20 1.00 1.05 Wavelength (µm)


ENVISION

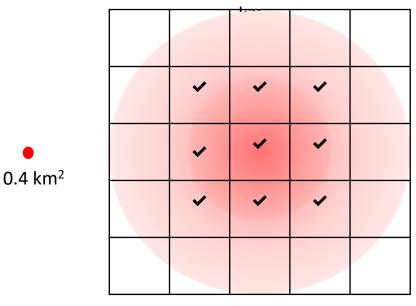
Subtle changes in the emissivity signatures were seen by the ESA VIRTIS instrument and will be even more visible to VERITAS and EnVision

VIRTIS observed relative emissivity variations interpreted to imply the presence of very young volcanism. Surface weathering was identified on the basis of a reduction in emissivity signature at 1.02 µm by Smrekar et al. (2010), D'Incecco et al. (2017), and Mueller et al. (2008, 2020).

With 6 bands and better topographic constraints, VEM will detect these with improved accuracy. VEM will use spectral slopes and ratios (30 spectral parameters along with the six band intensities) to develop discriminators for assessing relative surface weathering.

See presentations by Maturilli, Dyar and Alemanno tomorrow!

ENVISION

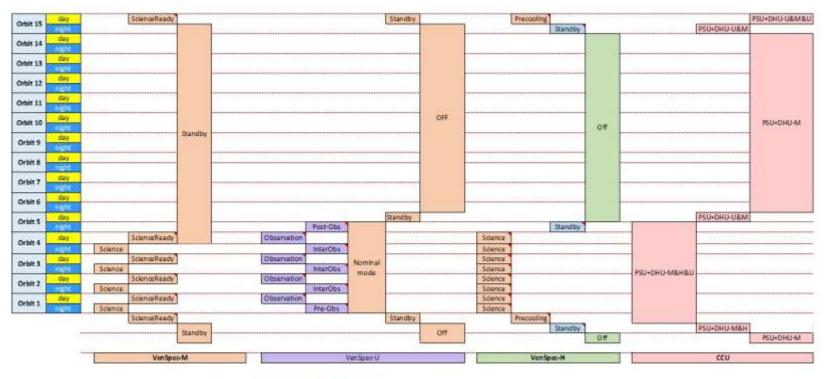


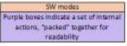
Detect Active Volcanism

- VenSpec-M and VEM search for radiance anomalies to detect volcanic activities
- The scattering in the atmosphere means a small feature illuminates a large spot at the top of the atmosphere
- VenSpec-M searches for active lava flows with 20 km instrumental resolution allowing robust automatic detection

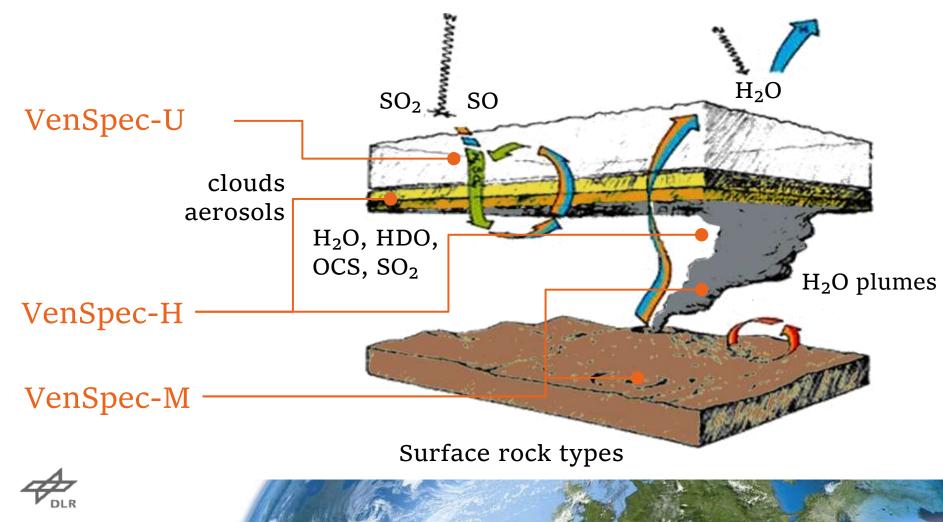
VenSpec-M sampling at 20

9000 km²


VenSpec-M will monitor for active volcanism with VenSpec-H and U


See presentation by Adeli et al tomorrow!

This is also a view of active volcanism -Envision with the VenSpec suite will be more suitable to detect this


The VenSpec operation scenario

VenSpec will provide a unique integrated dataset to study the coupled surface interior system of Venus

VenSpec will study the coupled surface atmosphere system of Venus ENVISION

- VenSpec is a key element in the holistic approach of the EnVision mission
- VenSpec will provide a set of complementary observations that will yield new insights in the evolution and current state of Venus
- VenSpec is uniquely suited to
 - provide a (more or less) global map of surface composition
 - study the coupling between the surface and the atmosphere
 - Search for active volcanism, both by heat signature and volcanic outgassing
- VenSpec has a joint science team to to study the coupled system as a whole with all datasets combined from the start
- The designs of all channels are consolidated in the Phase B1 phase

Twitter @Planetguy_Bln

