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Abstract

If a Near Earth Object (NEO) is discovered on an impact trajectory with Earth, a deflection mission
would need to be planned. The planetary defense community practices planning such missions so they
can be prepared to do the best job possible. While a kinetic impactor is the first choice for a deflection
mission, either a large size or a short warning time may require using a stand-off nuclear device to
deflect the NEO. A stand-off nuclear device emits x-rays that heat the surface layer of the NEO and
cause it to vaporize and blowoff, which imparts momentum to the NEO. Several years ago, a simple
formula to estimate the ∆v imparted to a NEO by a stand-off nuclear explosion was developed by one of
the authors and informally distributed for use in planning NEO deflection missions. This work will give
the derivation of that formula. In addition the formula will be extended to properly handle the low fluence
limit that was not included in that initial formula. This covers the case where the whole irradiated surface
of the NEO is not melted. The original formula also did not account for how the angle of incidence lowers
the deposition scale length. This keeps the energy closer to the surface and reduces the depth to which
material is melted. Finally, another formula based on the impulse developed by the energy deposition
profile is compared to the previous formula.

These formulae cannot predict the blow-off momentum from first principles. This is due to the fact
that the blow-off momentum depends on the shape, composition, and structure of the NEO which will
almost certainly be poorly known. In addition, because the x-rays deposit their energy on a length scale
measured in microns, the surface will be heated enough to reradiate some of the deposited energy.
Therefore, the coefficients in these formulae are fit to the results of radiation-hydrodynamic calculations
done for a grid of stand-off distances and yields. These calculations are required to account for the
reradiation of energy by the surface and for thermal waves that propagate into the material before the
hydrodynamic blow-off gets fully underway.

Keywords: Deflection, disruption, energy deposition, numerical simulation, nuclear

1. Introduction

This paper summarizes work done over that last several years by the authors. While the best results
come from a full radiation-hydrodymanics code calculation, mission planners have need of a relatively
simple approximation to estimate the deflection velocity of a near earth object (NEO). For either large
objects or objects discovered shortly before their impact, a kinetic impactor will likely not generate a
large enough ∆v to prevent an impact. For these scenarios, a nuclear explosion can impart a larger ∆v
or disrupt the asteroid so the fragments disperse and only a small percentage hit Earth. While neutrons
produce the largest ∆v for a given amount of energy, the available nuclear devices produce most of their
output in x-rays. Therefore, we consider the deflection due to x-rays in this paper. For simplicity, we
assume that the x-rays are absorbed in an exponential profile with a single absorption length.
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This paper derives formulae for the ∆v imparted to the object by making approximations so the cal-
culation is tractable. These formulae are then fitted to radiation-hydrodynamic code simulation results.
First, we derive the formula being used by the planetary defense community and distributed by one of
the authors. Second, we derive a more accurate version of this formula. Third, we derive a semianalytic
formula based on calculating the impulse generated at each point on the surface of the asteriod. We
show that each successive formula has more fidelty to the physics and they all give results that have the
same general shape. Therefore, when the formulae are fitted to impulse calculation results, they should
all similarly reproduce the behavior near their peak deflection velocities. The behavior of ∆v far from the
peak values has not been studied closely and may not be well reproduced by these formulae.

For all of these formulae we will use the same variables. In Figure 1 we show the angles and
distances used. Let θ be the angle between the source and a point on the surface of the asteroid
measured at the center of the asteroid. Let α be the angle between the center of the asteroid and a
point on its surface measured at the source. Let β be the angle between the center of the asteroid and
the source measured at a point on the surface of the asteroid. Because the asteorid is assumed to be
spherical, the angle of incidence is π − β; throughout this work we will represent the cosine of the angle
of incidence as − cos β. For length variables, we let r be the distance from the center of the asteroid and
s the distance from the source.

We also use the dimensionless variable x = d/R to represent the geometry of the burst. When
considering the yield of x-rays from the explosion, the relevant fluence is what will cause the surface to
melt. The x-ray deposition is modeled as an exponential profile with a single deposition length, λd. In
order to calculate the melted mass, we need the depth to which the asteroid is melted. We model the
energy deposition profile as ε(z) = Y

4πλd s2 e−z/λd where ε is energy per volume (see section 3 for updates
to this equation). Then the melt depth is defined as zmelt = λd ln[Y/(4πρλdεmelts2)] where εmelt is the melt
energy in energy per mass. The melt depth on axis goes to zero when the fluence, Y/d2 = 4πρλdεmelt = b.
If we represent that critical fluence by b then the dimensionless variable

y =
Y

bd2 (1)

is useful since it is equal to 1 when the on-axis point on the asteroid is just beginning to melt. In other
words, when y < 1 no material is melted and no deflection is achieved according to our forumlae.

R d

R S

source

asteroid

θmax
θ α

r s
β

Figure 1: Geometry for a source placed a distance d from the surface of a spherical asteroid. In
this coordinate system, the origin is located at the center of the asteroid.
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Some useful results are

s2 = R2
[
1 + (x + 1)2 − 2(1 + x)µ

]
(2)

µmax =
1

1 + x
(3)

S 2 = R2x(x + 2) (4)

− cos β =
−1 + (1 + x) µ[

1 + (x + 1)2 − 2 (x + 1) µ
]1/2 (5)

2. The original formula

The first version of the formula estimates the ejected mass as the mass of melted material. It also
assumes that all the incident energy is absorbed by this mass. The momentum of the ejecta is then
calculated from this mass and energy by treating it as a single point mass.

In order to calculate the melted mass we use the depth to which the asteroid is melted, zmelt =

λd ln[Y/(bs2)].

Mej = 2πR2
∫ 1

µmax

ρλd ln
( Y
bs2

)
dµ (6)

= 2πR2ρλd

µ − s2 ln
(

Y
bs2

)
2R2(x + 1)


1

µmax

(7)

= 2πR2ρλd

1 − x2 ln y
2(x + 1)

−
1

1 + x
+

x(x + 2) ln
(

yx2

x(x+2)

)
2(1 + x)

 (8)

= πρλdR2 x2

x + 1

{
2
x
[
1 + ln y

]
−

(
1 +

2
x

)
ln

(
1 +

2
x

)}
(9)

The deposited energy is all that is incident on the asteroid. In the future it will be important to find a
way to account for the energy that is radiated away by the hot surface layer because it does not generate
hydrodynamic motion. Of the energy that remains in the asteroid material we should also remove the
latent heats of melt and vaporization from the deposited energy but we have not done this. This error
only becomes significant in the low yield limit when a noticable fraction of the energy is in the unmelted
material.

Edep =
Y
2

(1 − cosαmax) =
Y
2

(1 −
√

1 − sin2 αmax) (10)

=
Y
2

[
1 −

√
1 − (x + 1)−2

]
(11)

The momentum of material being blown off is approximated by:

p =

√
2MejEdep (12)

=

√
πYρλdR2 x2

x + 1

{
2
x
[
1 + ln y

]
−

(
1 +

2
x

)
ln

(
1 +

2
x

)} [
1 −

√
1 − (x + 1)−2

]
(13)

Then the change in velocity is:

δv = p/Masteroid (14)

=
3

4R2

√
Yλd

πρ

x2

x + 1

{
2
x
[
1 + ln y

]
−

(
1 +

2
x

)
ln

(
1 +

2
x

)} [
1 −

√
1 − (x + 1)−2

]
(15)

=
a
√

Y
R2 δv′ (16)

δv′ =

√
x2

x + 1

{
2
x
[
1 + ln y

]
−

(
1 +

2
x

)
ln

(
1 +

2
x

)} [
1 −

√
1 − (x + 1)−2

]
(17)
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where δv′ is the dimensionless part of δv′ and contains the shape of the function. We also defined
a = 3

4

√
λd/(πρ) as a fitting parameter. The other fitting parameter is the fluence b from the definition of y

in equation 1. With Y given in kilotons (1 kt = 4.184 × 1012 J) and R and d given in meters, the units of a
are cm m2/(s kt1/2) and the units of b are kt/m2 (m2 kg−1/2 and J/m2 in SI units, respectively).

2.1. Low fluence correction
The first improvement to this formula is accounting for the low fluence limit properly. The lower limit

of the integral in equation 6 is incorrect when the fluence at the tangency point, µmax, is too low to melt
the surface. This limiting fluence is given by 0 = zmelt = λd ln[Y/(bS 2)], Y = bR2x(x + 2), or equivalently
y = x+2

x . Since y must be greater than 1 for there to be any melted material, we need to revise the
formula for the range 1 < y < x+2

x (equivalent to 0 < x < 2
y−1 ).

The value of µ where zmelt = 0 is given by:

Y = bs2 = bR2
[
1 + (x + 1)2 − 2(x + 1)µ1

]
(18)

=⇒ µ1 =
1 + (x + 1)2 − yx2

2(x + 1)
= 1 −

x2(y − 1)
2(x + 1)

(19)

Note that when y = 1 this gives µ = 1 and the integral will go to zero. When y = (x + 2)/x we get
µ = 1/(x + 1) which is just µmax, the value used in the high flux limit. Note that s2(µ1) = R2x2y = Y/b.

Using this value of µ1 for the lower limit of the integral for the ejected mass in equation 6 gives:

Mej = 2πR2
∫ 1

µ1

ρλd ln
( Y
bs2

)
dµ (20)

= 2πR2ρλd

µ − s2 ln
(

Y
bs2

)
2R2(x + 1)


1

µ1

(21)

= 2πR2ρλd

[
1 −

x2 ln y
2(x + 1)

− 1 +
x2(y − 1)
2(x + 1)

]
(22)

= πρλdR2 x2

x + 1
(y − 1 − ln y) (23)

Similarly, the energy deposited in this µ interval is:

sinα1 =
R

s(µ1)

√
1 − µ2

1 (24)

= R

√
b
Y

√
1 −

[
1 + (x + 1)2 − yx2

2 (x + 1)

]2

(25)

=
x(y − 1)
2 (x + 1)

√[
4 (x + 1)
x2(y − 1)

− 1
]

1
y

(26)

Edep =
Y
2

(1 − cosα1) (27)

=
Y
2

1 −
√

1 −
x2

y

[
y − 1

2 (x + 1)

]2 [
4 (x + 1)
x2(y − 1)

− 1
] (28)

Then the δv in the low fluence limit is given by:

δvlow =
3

4R2

√√√√
Yλd

πρ

x2

x + 1
(y − 1 − ln y)

1 −
√

1 −
x2

y

[
y − 1

2 (x + 1)

]2 [
4 (x + 1)
x2(y − 1)

− 1
] (29)

=
a
√

Y
R2 δv′low (30)

δv′low =

√√√√
x2

x + 1
(y − 1 − ln y)

1 −
√

1 −
x2

y

[
y − 1

2 (x + 1)

]2 [
4 (x + 1)
x2(y − 1)

− 1
] (31)
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Figure 2: The dimensionless δv′ formula in equations 17 and 31. The white line is the upper boundary of
where the low fluence equation must be used.

Using this equation in the low fluence limit results in the δv dropping smoothly to zero without any
negative square root arguments. The units and amplitude of the function are contained in the a

√
Y/R2

term and the remaining dimensionless square root (δv) determines the shape of the function. When fit
to calculations done by Joe Wasem the errors in the coefficients are large enough that we replace a by
ea′ and b by eb′ to ensure positivity. The results are a = 5367 and b = 2.16× 10−4 for Y in kilotons and R in
meters. The uncertainties (1σ) are a′ = 8.588 ± 0.528 and b′ = −8.4398 ± 2.77. These large uncertainties
mean that we either need more calculations to do a proper fit or the model is not an adequate match to
reality.

Figure 2 shows that for y > 10 that the optimal stand off distance ranges from 75% to 50% of the
asteroid radius. Calculating the peak value along the curve yx2 = C will return the optimal stand off
distance for a constant yield and radius, which shifts the optimal standoff to 33% of the asteroid radius
for high fluences and 20% for low fluences.

3. Corrected Melt Depth

As noted in section 2, the original energy deposition profile used a surface fluence of Y/(4πs2) and a
deposition scale length of λd. However, in practice, the deposition length scale should be proportional
to − cos β since the x-rays come in at that angle. This change in the scale length introduces a factor of
− cos β in the denominator of the leading coefficient, which is in turn canceled out when the fluence is
also correctly represented to account for incident angle: −Y cos β/(4πs2). This gives a more complicated
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equation for the melt depth:

ε(z) =
Y cos β

4πλd s2 cos β
ez/(λd cos β) =

Y
4πλd s2 ez/(λd cos β) (32)

zmelt = −λd cos β ln
[ Y
bs2

]
(33)

= λd
(1 + x) µ − 1[

1 + (x + 1)2 − 2 (x + 1) µ
]1/2 ln

[
yx2

1 + (x + 1)2 − 2 (x + 1) µ

]
(34)

Mej = 2πR2ρλd

∫ 1

µ1

(1 + x) µ − 1[
1 + (x + 1)2 − 2 (x + 1) µ

]1/2 log
[

yx2

1 + (x + 1)2 − 2 (x + 1) µ

]
dµ (35)

µ1 = (x + 1)−1 , s2 = R2
[
1 + (x + 1)2 − 2 (x + 1) µ

]
, s2

1 = R2x (x + 2) (36)

Mej =
2πR2ρλd

9 (x + 1)

(
−

[
1 + (x + 1)2 − 2 (x + 1) µ

]1/2 {
2
[
−5 + 4 (x + 1)2 + (x + 1) µ

]
+3

[
−2 + (x + 1)2 + (x + 1) µ

]
ln

[
yx2

1 + (x + 1)2 − 2 (x + 1) µ

]})1

µ1

(37)

=
2πR2ρλd

9 (x + 1)

{[
(x + 1)2 − 1

]1/2 (
2
[
−4 + 4 (x + 1)2

]
+ 3

[
−1 + (x + 1)2

]
ln

{
yx2

(x + 1)2 − 1

})
− x

{
2
[
−5 + 4 (x + 1)2 + (x + 1)

]
+3

[
−2 + (x + 1)2 + (x + 1)

]
ln y

}}
(38)

= πR2ρλd
2

9 (x + 1)

{
[x (x + 2)]3/2

[
8 + 3 ln

( yx
x + 2

)]
− x2 [

2 (4x + 9) + 3 (x + 3) ln y
]}

(39)

= πR2ρλd M′ej (40)

M′ej =
2

9 (x + 1)

{
[x (x + 2)]3/2

[
8 + 3 ln

( yx
x + 2

)]
− x2 [

2 (4x + 9) + 3 (x + 3) ln y
]}

(41)

where M′ej is the dimensionless part of the ejected mass. Since there is no change in the deposited
energy, the resulting δv is:

δv =

√
2MejEdep/Masteroid (42)

=
3

4R2

√
Yλd

πρ

2
9 (x + 1)

{
[x (x + 2)]3/2

[
8 + 3 ln

( yx
x + 2

)]
− x2 [

2 (4x + 9) + 3 (x + 3) ln y
]} [

1 −
√

1 − (x + 1)−2
]

=
ac
√

Y
R2 δv′ (43)

δv′ =

√
2

9 (x + 1)

{
[x (x + 2)]3/2

[
8 + 3 ln

( yx
x + 2

)]
− x2 [

2 (4x + 9) + 3 (x + 3) ln y
]} [

1 −
√

1 − (x + 1)−2
]

(44)

3.1. Low fluence correction
As in section 2, the lower limit of the ejected mass integral should again be changed in the low

fluence limit. The revised melt depth definition reduces the melt depth but leaves the limiting fluence
unchanged as y = 2+x

x or x = 2
y−1 . Similarly, the lower limit for µ remains:

µ1 =
1 + (x + 1)2 − yx2

2(x + 1)
= 1 −

x2(y − 1)
2(x + 1)

(45)
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This changes the ejected mass to:

Mej =
2πR2ρλd

9 (x + 1)

(
−

[
1 + (x + 1)2 − 2 (x + 1) µ

]1/2 {
2
[
−5 + 4 (x + 1)2 + (x + 1) µ

]
+3

[
−2 + (x + 1)2 + (x + 1) µ

]
ln

[
yx2

1 + (x + 1)2 − 2 (x + 1) µ

]})1

µ1

(46)

= πR2ρλd
2x2

9 (x + 1)

{
y1/2 [

9(x + 2) − xy
]
− 2 (4x + 9) − 3 (x + 3) ln y

}
(47)

= πR2ρλd M′ej (48)

M′ej =
2x2

9 (x + 1)

{
y1/2 [

9(x + 2) − xy
]
− 2 (4x + 9) − 3 (x + 3) ln y

}
(49)

where M′ej is the dimensionless part of the ejected mass.
The deposited energy is the same as equation 28 and the δv is:

δvlow =
3

4R2

√√√√
Yλd

πρ
M′ej

1 −
√

1 −
x2

y

[
y − 1

2 (x + 1)

]2 [
4 (x + 1)
x2(y − 1)

− 1
] (50)

=
ac
√

Y
R2 δv′low (51)

δv′low =

√√√√
M′ej

1 −
√

1 −
x2

y

[
y − 1

2 (x + 1)

]2 [
4 (x + 1)
x2(y − 1)

− 1
] (52)

Figure 3 shows the same basic shape as figure 2, except that the overall amplitude is less since the
ejected masses are smaller. The ratio of the two formulae in figure 4 shows that the main differences
are for small stand-off distances and low yields. The optimal stand off distance is somewhat larger
as well, ranging from ∼50% to 25% of the asteroid radius over high to low fluences. When fit to Joe
Wasem’s simulations for the original model, the coefficients have errors are large enough that we again
replace a by ea′ and b by eb′ to ensure positivity. The results are ac = 10200 and bc = 3.7 × 10−4 with Y in
kilotons and R in meters. The uncertainties (1σ) are a′ = 9.2125 ± 0.424 and b′ = −7.902 ± 1.84. Again
the uncertainties are large which means that we either need more simulations to do a proper fit or the
model is not an adequate match to reality.

4. Impulse Approach

The above derivations treat the entire energy deposited and mass melted as a single lump to ap-
proximate the impulse. The 1994 Hazards chapter[1] on energy deposition shows how to generate the
impulse per unit area of the surface. If we assume that impulse generated by any surface element is
directed normal to the surface we can integrate for the total impulse. This approach defines the impulse
per volume as the density times the square root of the specific energy deposited that is above the melt
energy. The depth dependence of the fluence and the fluence at the surface are:

F(z) = F0 exp{−z/[λd cos(π − β)]} = F0 exp[z/(λd cos β)] (53)

F0 = −
Y

4πs2 cos β (54)
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Figure 3: The δv′ formula in equations 44 and 52. The white line is the upper boundary of where the low
fluence equation must be used.

The impulse per unit area, I, at a given point is determined by assuming that the specific internal energy
above melt is turned into kinetic energy.

ε(z) = −
F(z)

ρλd cos β
=

Yεmelt

bI s2 exp[z/(λd cos β)] (55)

dI = ρvdz = ρ
√

2[ε(z) − εmelt] dz (56)

I(µ) =
√

2εmelt

∫ zmelt

0
ρ

√
Y

bI s2 ez/(λd cos β) − 1 dz =
√

2εmelt ρ

∫ zmelt

0

√
F∗0ez/(λd cos β) − 1 dz (57)

F∗0 = −
F0

ρλdεmelt cos β
=

Y
bI s2 (58)

w =

√
F∗0ez/(λd cos β) − 1, z = λd cos β ln

w2 + 1
F∗0

, dz = F∗0λd cos β
2w

w2 + 1
dw (59)

I(µ) = −
√

2εmelt ρλd cos β
∫ √F∗0−1

0

2w2

w2 + 1
dw (60)

= −2
√

2εmelt ρλd cos β
[√

F∗0 − 1 − tan−1
(√

F∗0 − 1
)]

(61)

I(µ) = −
aI
√

Y
R

ρ
4
√

2
3x
√

y
cos β

[√
F∗0 − 1 − tan−1

(√
F∗0 − 1

)]
(62)
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Figure 4: The ratio of the original formula in figure 2 to the formula in figure 3. The color bar does not
show the entire range of the data.

Now both F∗0 (Eqn 58) and cos β (Eqn 5) depend on µ. To get the total impulse we use

F∗0 =
Y

bI s2 =
yx2

1 + (x + 1)2 − 2(x + 1)µ
(63)

Itot =

∫ 1

µ1

2πR2I(µ) µ dµ (64)

δv =
Itot

4
3πR3ρ

=
3

2Rρ

∫ 1

µ1

I(µ) µ dµ (65)

=
aI
√

Y
R2

2
√

2
x
√

y

∫ 1

µ1

[
(x + 1)µ − 1

] [ √
F∗0 − 1 − tan−1

( √
F∗0 − 1

)]
[
1 + (x + 1)2 − 2(x + 1)µ

]1/2 µ dµ (66)

As noted before, the lower limit is normally the angle where the tangent line hits the sphere, µ1 =

(x + 1)−1. When the fluence is below y < (x + 2)/x the lower limit becomes

µ1 =
1 + (x + 1)2 − yx2

2 (x + 1)
= 1 −

x2(y − 1)
2(x + 1)

(67)

to ensure that F∗0 ≥ 1. Note that the lim
x→0

µ1 = 1 and therefore δv→ 0 as the extent of the integral goes to
zero.

Figure 5 again shows a similar shape to figures 2 and 3 though the amplitude has dropped again.
The drop in amplitude has two causes. First, the energy in material that has not melted is not included.
Secondly, impulse generated from off axis points is multiplied by a factor of cos θ to only include the
component of the momentum along the line to the source. The ratio of equation 17 to 66 is shown in
figure 6. The reduction in the amplitude is shown by the large region where the ratio is between 2 and
3. A weaker effect is seen near the line where the lower limit of the integral changes from the tangent
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Figure 5: The dimensionless part of the δv formula in equations 66.

point to the point where melt starts. At this time it is not clear what causes this. Trying to fit this formula
to the available sweep of simulations, is underway.

5. Conclusion

In this paper we have presented three formulae to approximate the deflection of a near earth object
by a stand-off nuclear explosion. Each offers slightly more fidelity to the physics involved. The final one
based on impulse is still a work in progress.

The results in this paper are for asteroids composed of SiO2. The set of simulations used to fit the
formulae should be extended to better cover the relevant portions of the dimensionless variable space.
For now we recommend using the original formula, equations 17 and 31 with the coefficients a = 5367
and b = 2.16 × 10−4. Work is ongoing to extend this model to other common asteroid materials such as
forsterite, ice, and iron-nickel.

For large fluences a significant fraction of the deposited energy is reradiated before any hydrody-
namic motion takes place. This reduction in the energy available to produce momentum needs to be
taken into account for these formulae.

Appendix

Below is python coding used to calculate the three formulae presented in this paper. Functions are
given to evaluate the dimensionless formulae, Original Formula dim(), Corrected Formula dim(),
and Impulse dim(). Wrapper functions are given to calculate the dimensionless variables and calculate
the full change in velocity, OriginalModel(), CorrectedModel(), and ImpulseModel(). The functions
are set up to work with numpy arrays except for the Impulse dim() function which needs to do an
integral.

10
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Figure 6: The ratio of the original formula in figure 2 to the formula in figure 5. The color bar does not
show the entire range of the data.

import numpy as np

import scipy.optimize

import scipy.integrate

import math

def Original_Formula_dim(x, yp) :

"""Implement the original deflection formula including the low fluence case

x - HOB or standoff (m) / radius of asteroid (m)

yp - Yield (kt)/(b D^2)

"""

# mu_1 is cosine of angle where melt sets in, mu_t is the tangency angle

mu_1 = ( 2.0 *(1.0 + x) + (1.0 - yp)*x*x )/( 2.0 *(1.0 + x) )

mu_t = 1.0/(1.0 + x)

# Mass_melted is the geometric part. It is missing the np.pi*density*Lambda_D*R**2 factor

Mass_melted = np.where( (yp <= 1.0) | (x == 0.0), 0.0, (x**2/(1.0 + x))* \

np.where( mu_1 > mu_t, (yp - 1.0 - np.log(yp)), ((2.0/(x + 1e-20))*( 1.0 + np.log(yp)) - \

(1.0 + 2.0/(x + 1e-20))*np.log(1.0 + 2.0/(x + 1e-20)))))

# Edep is the geometric part. It is missing the Y/2 factor

Edep = 0.5*np.where( yp <= 1.0, 0.0, np.where( mu_1 > mu_t, 1.0 - \

np.sqrt( 1.0 - (x*x/yp) * ( (yp - 1.0)/( 2.0*(1.0 + x) ) )**2 *(4.0*(1.0 + x)/ \

(x*x*(yp - 1.0) + 1e-20) - 1.0)), 1.0 - np.sqrt( 1.0 - (1.0 + x)**(-2)) ) )

deltaV = np.sqrt(2.0*Mass_melted*Edep)

return deltaV

11
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def OriginalModel(z, Standoff, Rad, Yield):

"""

evaluate the original model extended for low fluences

z = [a,b], a = 5970, b = 3.519e-04

Standoff, Rad, Yield are arrays of the same length

to define the result wanted

"""

x = Standoff/Rad

y = Yield/(z[1]*Standoff*Standoff)

deltaV = z[0]*Yield**0.5 * Rad**(-2) * Original_Formula_dim(x, y)

return deltaV

def Corrected_Formula_dim(x, yp) :

"""Implement the deflection formula with the incident angle dependent deposition length

x - HOB or standoff (m) / radius of asteroid (m)

yp - Yield (kt)/(b D^2)

"""

# mu_1 is cosine of tangency angle, mu_t is the tangency angle

mu_1 = ( 1.0 + (1.0 + x)**2 - yp*x*x )/( 2.0 *(1.0 + x) )

mu_t = 1.0/(1.0 + x)

# Note that when yp <= 1.0 that mu_1 >= 1.0

# Mass_melted is the geometric part. It is missing the np.pi*density*Lambda_D*R**2 factor

Mass_melted = np.where( (yp <= 1.0) | (x == 0.0), 0.0, (2.0/(9.0*(1.0 + x)))* \

np.where( mu_1 > mu_t, x*x*(np.sqrt(yp)*(9.0*(2.0 + x) - yp*x) - \

(2.0*(9.0 + 4.0*x) + 3.0*(3.0 + x)*np.log(yp + 1e-20))), \

(np.power(x*(2.0+x), 1.5)*(8.0 + 3.0*np.log(yp*x/(x + 2.0) + 1e-20)) - \

x*x*( 2.0*(4.0*x + 9.0) + 3.0*(x + 3.0)*np.log(yp + 1e-20)) )))

# Edep is the geometric part. It is missing the Y/2 factor

Edep = 0.5*np.where( yp <= 1.0, 0.0, np.where( mu_1 > mu_t, 1.0 - \

np.sqrt( 1.0 - (x*x/yp) * ( (yp - 1.0)/( 2.0*(1.0 + x) ) )**2 * \

(4.0*(1.0 + x)/(x*x*(yp - 1.0)) - 1.0)), 1.0 - np.sqrt( 1.0 - (1.0 + x)**(-2)) ) )

deltaV = np.sqrt(2.0*Mass_melted*Edep)

return deltaV

def CorrectedModel(z, Standoff, Rad, Yield):

"""

evaluate the model corrected for angle of incidence

z = [a,b], a = 1.1153e+04, b = 5.5668e-04

Standoff, Rad, Yield are arrays of the same length

to define the result wanted

"""

x = Standoff/Rad

y = Yield/(z[1]*Standoff*Standoff)

deltaV = z[0]*Yield**0.5 * Rad**(-2) * Corrected_Formula_dim(x, y)

return deltaV

def Impulse_integrand(mu, x, yp):

"""integrand for the impulse integral.

mu - value of the angle

x - D/R - (HOB or standoff (m))/(radius of asteroid (m))

yp - Yield (kt)/(b D^2)

"""

ssqr = 1.0 + (1.0 + x)**2 - 2.0*(1.0 + x)*mu

Term = yp*x*x/(ssqr) - 1.0

if Term < 0.0:

Term = 0.0

12
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sqrt_Term = math.sqrt(Term)

Result = mu*(-1.0 + (1.0 + x)*mu)*(sqrt_Term - math.atan(sqrt_Term))/ \

(math.sqrt(ssqr) + 1e-20)

return Result

def Impulse_dim(x, yp):

"""

provide dimensionless delta v from Impulse formula for given parms

yp - Yield (kt)/(b D^2)

x - D/R - (HOB or standoff (m))/(radius of asteroid (m))

"""

# lower limit is max of tangent value and melt limit value

mu_1 = max(1.0/(1.0 + x), 0.5*(1.0 + (1.0 + x)**2 - yp*x*x)/(1.0 + x))

# do the integral

Result = 2**1.5 /(x*math.sqrt(yp)) * \

scipy.integrate.quad(Impulse_integrand, mu_1, 1.0, args=(x, yp))[0]

return Result

def ImpulseModel(z, Standoff, Rad, Yield):

"""

evaluate the impulse model

z = [a,b], a = 1.660e+05, b = 9.993e-02

Standoff, Rad, Yield are arrays of the same length

to define the result wanted

"""

x = Standoff/Rad

y = Yield/(z[1]*Standoff*Standoff)

deltaV = np.zeros(np.shape(x))

for i in range(len(deltaV)):

deltaV = z[0]*Yield**0.5 * Rad**(-2) * Impulse_dim(x[i], y[i])

return deltaV
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