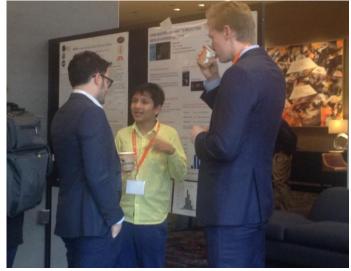
AIMING FOR APOPHIS: How we did Asteroid Astrometry and Taught Others During COVID-19 Lockdowns?

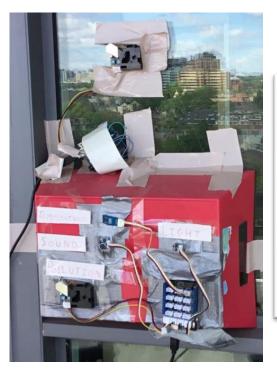
Arushi Nath (Grade 6) Artash Nath (Grade 9)

7th IAA PDC Conference 2021 30 April 2021


Website: <u>www.HotPopRobot.com</u> Twitter: @Wonrobot

How Apophis Entered Our Lives ?

Artash: Participating and presenting in 6th IAA Planetary Defense Conference 2019, Maryland



Arushi: 3D printed models of Asteroid Apophis

COVID-19: Closed Schools, Open Minds

On Earth

Measuring Impact of COVID-19 Lockdowns on Local Environment *Mar 2020 – Jul 2020*

Subsurface

 \sim Monitor My Lockdown

<section-header>

ace

Space

Finding APOPHIS! Nov 2020 - Feb 2021

Measuring Impact of COVID-19 Lockdowns on Seismic Vibrations Jun 2020 – ongoing

Imaging Apophis: Robotic Telescopes

Slooh

Chile Two Wide-Field Telescope

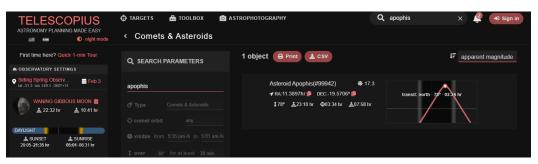
432mm Aperture Field of View: 43 * 43 arcmin

iTelescope T11 - Deep Space

510mm Aperture Field of View: 54 * 35 arcmin

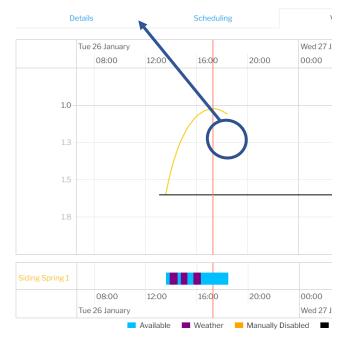
Faulkes Telescope Project / Las Cumbres Observatory Faulkes Telescope South (FTS)

2000mm Aperture Field of View: 10 * 10 arcmin


(Image Credit: Gronk Oz - Own work, CC BY-SA 4.0)

Pointing the Faulkes Telescope South to Apophis

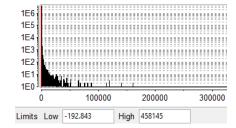
Daily Right Ascension and Declination Values from NASA HORIZON project


Date(UT)	-			(ICRF)				
\$\$SOE								
2021-Jan-10	00:00	11	43	51.55	-16	05	04.7	18.554
2021-Jan-11	00:00	11	44	00.99	-16	18	09.7	18.515
2021-Jan-12	00:00	11	44	06.86	-16	31	01.5	18.475
2021-Jan-13	00:00	11	44	09.00	-16	43	38.9	18.435
2021-Jan-14	00:00	11	44	07.26	-16	56	00.8	18.393
2021-Jan-15	00:00	11	44	01.47	-17	08	06.2	18.351
2021-Jan-16	00:00	11	43	51.49	-17	19	53.9	18.308
2021-Jan-17	00:00	11	43	37.14	-17	31	22.7	18.264
2021-Jan-18	00:00	11	43	18.28	-17	42	31.4	18.219
2021-Jan-19	00:00	11	42	54.72	-17	53	18.7	18.174

Source: https://ssd.jpl.nasa.gov/horizons.cgi

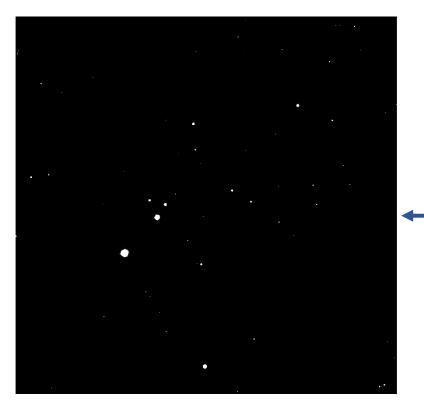
Source: Telescopius Website. https://telescopius.com/

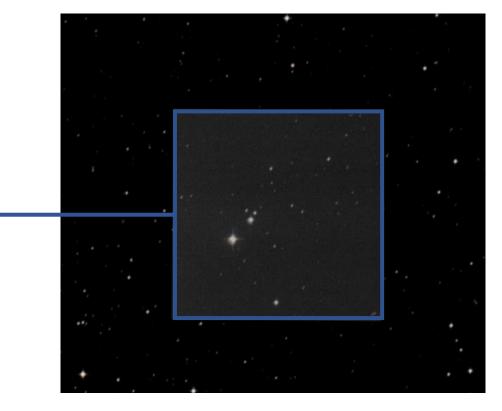
Best Visibility and Time



Scaling our Images taken from the Faulkes Telescope South

To see maximum possible objects: brighter and dimmer


(Modifying Pixel Brightness Range using the Min/Max Function of SAOImage DS9 software, ds9.si.edu)


h.,		
100000	200000	300000
/ 0 H	liah 10000	

Comparing CCD Image with Celestial Field of View Image could be rotated or flipped!

Taken with Faulkes Telescope South on 25th Jan 2021 (RA: 11h 38m 06.99s Dec: -18° 53' 59.4")

Matching of image using AAS WorldWide Telescope http://worldwidetelescope.org/

Matching Stars in CCD Image with Stars in Celestial Field of View

Querying Star Catalogues Using Astrometrica software: www.astrometrica.at

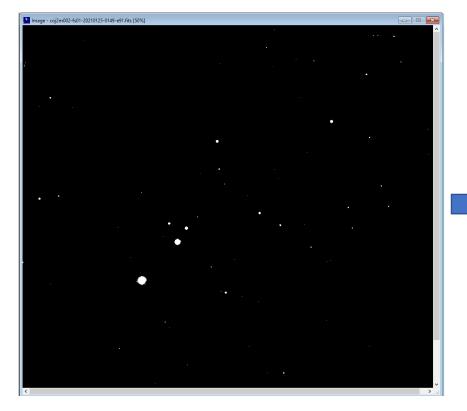
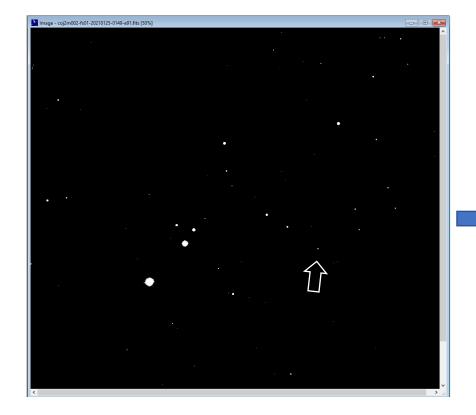



Image taken using the Faulkes Telescope South on 25th January 2021 (RA: 11h 38m 06.99s Dec: -18° 53' 59.4")

Finding Apophis!

Overlay the image from Minor Planet Centre (MPC) database using Astrometrica

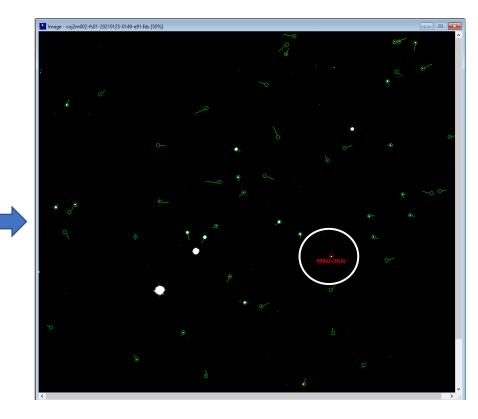
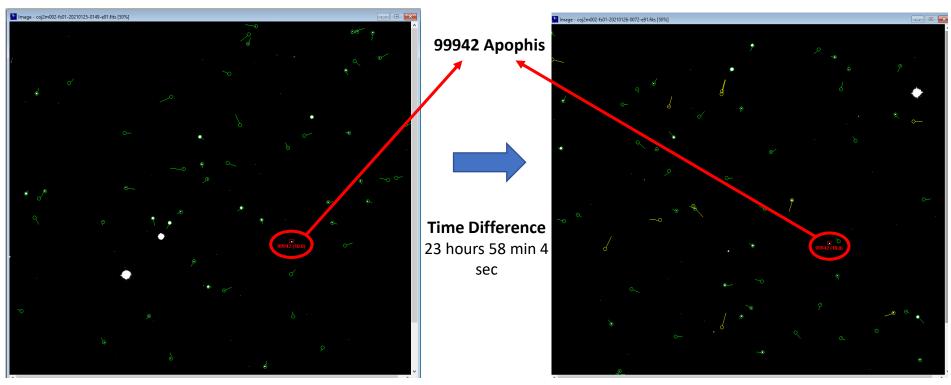
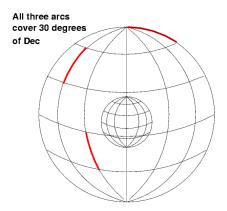



Image taken using the Faulkes Telescope South on 25th January 2021 (RA: 11h 38m 06.99s Dec: -18° 53' 59.4")

Locating Apophis Twice to Calculate Motion

25th January 2021. 18:07:33 UTC


26th January 2021 18:05:37 UTC

RA = 11h 37m 58.225s Dec = -18 54' 46.6" RA = 11h 36m 51.98s Dec = -19 01' 54.6"

Images taken using the Faulkes Telescope South

Calculating Proper Motion of Apophis

Apophis	Right Ascension	Declination		
25 January 2021	11h 37m 58.225s (A)	-18 54' 46.6" (A)		
26 January 2021	11h 36m 51.98s (B)	-19 01' 54.6" (B)		

RA (A) - RA (B) = 174.4917 - 174.2167 = 0.275Dec (A) - Dec (B) = (-18.9131) - (-19.0319) = 0.1188Average Declination (Dec avg) = -18.9725Cos(Dec avg) = 0.95Arc Length (AB) = 0.286 degrees B

Time Taken = 23 hours 58 min 4 sec = 82800 + 3484 = 86284 s

Proper Motion of Apophis = 3.13 * 10⁻⁶ degrees /sec

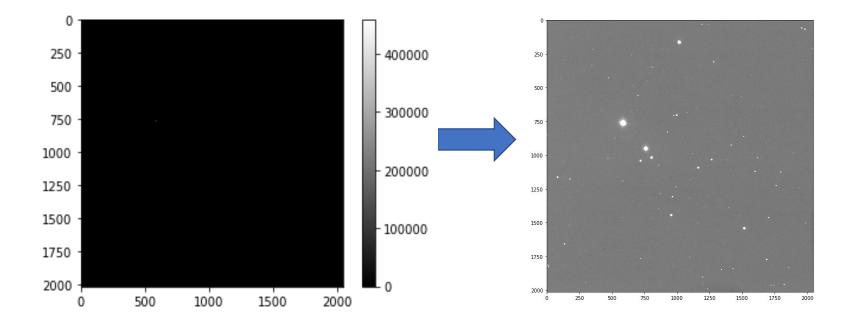
= 0.011268 arcsec/sec

Source: http://spiff.rit.edu/classes/phys301/lectures/precession/precession.html

Doing Basic Asteroid Astrometry Using Python

STEPS

- Download libraries and open Flexible Image Transport System (FITS) files
- 2. Scale the images
- 3. Read FITS header files for RA and Dec, pixel scale, CCD size, and focal length
- 4. Query 'Star Catalogues'
- 5. Match catalogue stars with stars in CCD images
- 6. Find the asteroid
- 7. Plate Solving (arcmin/pixel) to calculate proper motion of asteroid


Download Python Libraries and Open (FITS) Image Files

In [1]:	<pre># Importing Required Libraries import numpy as np from astropy.io import fits</pre>	0 - 250 -					- 400000
	import urllib as url	500 - 750 -					- 300000
	<pre>import os import matplotlib.pyplot as plt</pre>	1000 - 1250 -					- 200000
In []:	<pre># Opening FITS Image Files image_data = fits.getdata(r'\FILE PATH\xyz.fits') plt.imshow(image_data, cmap = 'gray')</pre>	1500 - 1750 - 2000 - 0	500	1000	1500	2000	- 100000 - 0
	plt.colorbar()						

Scaling of Images Using Python

Scaling of Images using Standard Deviation Function

plt.figure(figsize=(10, 10))
plt.imshow(image_data, cmap='gray', vmin=image_data.mean()-0.2*image_data.std(), vmax=image_data.mean()+0.2*image_data.std())

Reading FITS header and Querying it for RA and Dec, Pixel Scale, CCD Size, and Focal Length

	SCHEDSEE=	1.9225850	7	[arcsec] Estimated seeing when group scheduled
	SCHEDTRN=	'N/A '	1	[(0-1)] Estimated transparency when group sched
	TRIGGER =	'N/A '	1	External trigger ID
	OBRECIPE=	'N/A '	1	Observing Recipes required/used
	PCRECIPE=	'N/A '	1	Processing Recipes required/used
	PPRECIPE=	'N/A '	1	Post-Processing Recipes required/used
	RA =	'11:38:06.4917'	1	[HH:MM:SS.sss] RA where telescope is pointing
	DEC =	'-18:54:22.377'	1	[sDD:MM:SS.ss] Dec where telescope is pointing
	RADESYS =	'ICRS '	1	[[FK5,ICRS]] Fundamental coord. system of the o
	LST =	'12:24:53.68'	1	[HH:MM:SS.ss] LST at start of current observati
	CAT-RA =	'11:38:06.990'	1	[HH:MM:SS.sss] Catalog RA of the object
	CAT-DEC =	'-18:53:59.40'	1	[sDD:MM:SS.ss] Catalog Dec of the object
	CAT-EPOC=	2000.0000000	1	[Year] Catalog epoch of the coordinates
	OFST-RA =	'11:38:06.990'	1	[HH:MM:SS.sss] Catalog RA plus pointing offsets
	OFST-DEC=	'-18:53:59.40'	1	[sDD:MM:SS.ss] Catalog Dec plus pointing offset
	TPT-RA =	'11:38:58.053'	1	[HH:MM:SS.sss] Telescope demand RA
	TPT-DEC =	'-18:51:10.67'	1	[sDD:MM:SS.ss] Telescope demand Dec
	OBJECT =	'Apophis '	7	Object name
	SRCTYPE =	'EXTRASOLAR'	7	Source type
ľ	I			

#Querying FITS File for Information

#Camera

NAXIS1 = hdu.header['NAXIS1']
NAXIS2 = hdu.header['NAXIS2']
CCDXPIXE = hdu.header['CCDXPIXE']

#OBJECT

RA = hdu.header['RA']
DEC = hdu.header['DEC']
DATE = hdu.header['DATE-OBS']

#TELESCOPE

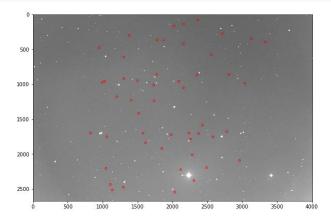
Aperture = 2000 #mm Focal_Ratio = 10 Pixel_Scale = 0.0025 #arcmin/pixel

Query Star Catalogue USNO-B 1

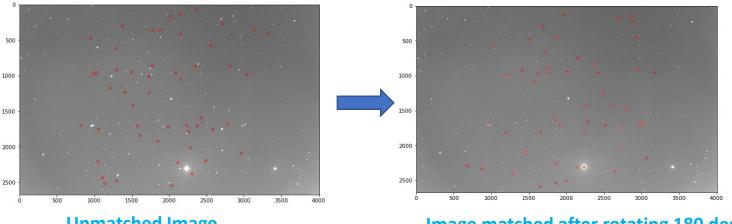
```
#Querying Star Catalogue: United States Naval Observatory-B 1 (USNO-B 1)

def search_usno(ra_deg, dec_deg, fov_am):# RA/Dec in decimal degrees/J2000.0 FOV in arc min.

    #Request to open the USNO-B1 catalog from the internet
    str1 = 'http://webviz.u-strasbg.fr/viz-bin/asu-tsv/?-source=USNO-B1'
    str2 = '&-c.ra={:4.6f}&-c.dec={:4.6f}&-c.bm={:4.7f}/{:4.7f}&-out.max=unlimited'.format(ra_deg, dec_deg, fov_am, fov_am)
    f = url.request.urlopen(str1+str2)

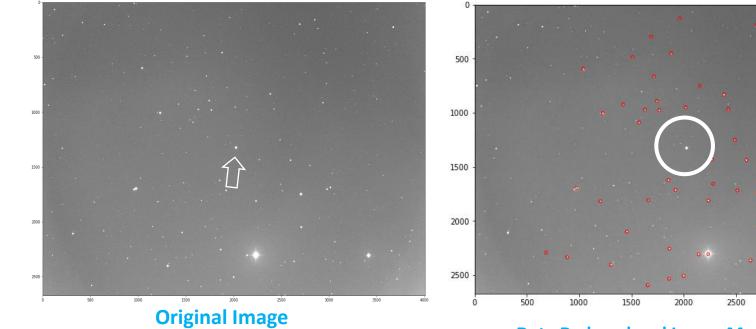

    # Read from the object, storing the page's contents in 's'.
    s = f.read()
    f.close()
```


get rid of header


sl =s.splitlines()
sl = sl[36:-1]

```
http://tdc-www.harvard.edu/catalogs/ub1.html
```


Matching Catalogue Stars with CCD Stars


```
#Rotating the USNO-B1 Catalog Stars to Match Stars in CCD Image
import math
def rotate(origin, point, angle):
    .....
    Rotate a point counterclockwise by a given angle around a given origin.
    The angle should be given in radians.
    ......
    ox, oy = origin
    px, py = point
    qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy)
    qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy)
    return qx, qy
```


Unmatched Image

Image matched after rotating 180 degrees

Finding the Asteroid!

Data Reduced and Image Mapped Using Sky Catalogue using Python

3000

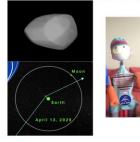
3500

4000

Outreach: Reaching to Kids and Families

Royal Astronomical Society of Canada (RASC)

Det Vournelf Addressed Addres


Global Innovation Field Trip (GIFT)

novation World - Follow

<image>

School Show and Tell (Français)

Viser à Apophis: Faites-le Vous-Même Astrométrie Astéroïde à l'Aide de Python

Arushi Nath (6e année) 8 février 2021

site: www.HotPopRobot.com

AIMING FOR APOPHIS: How we did Asteroid Astrometry and Taught Others During COVID-19 Lockdowns?

Arushi Nath (Grade 6) Artash Nath (Grade 9)

7th IAA PDC Conference 2021 30 April 2021

Website: <u>www.HotPopRobot.com</u> Twitter: @Wonrobot

