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ABSTRACT 

Reliable on-board data handling is the backbone of every successful satellite mission. New scientific 

experiments can only be validated, and results obtained, if the recorded scientific data reaches the 

ground completely and correctly. For this, several special techniques were applied during the 

implementation of the SONATE-2 mission. Generic communication protocols were defined between 

all payloads, subsystems, and the On-board data handling (OBDH) of SONATE-2 to reduce the 

overall complexity of the data management system. With the help of these protocols, the development 

effort could be reduced, and the data transfers simplified. In addition, this allowed the communication 

interfaces to be simulated and quickly tested during development with a desktop computer using an 

OBDH-Simulator. 

Another important advantage of the developed solution is flexibility and abstraction of the content of 

the data to be transferred. A practical example of this capability is the reception of software updates. 

Usually, even small changes require completely new software images or individual applications to be 

transferred to the satellite. This takes a lot of time and moreover demands a stable radio connection, 

which is not always available, especially with CubeSats. For this reason, SONATE-2 offers the 

additional option of uploading delta updates. The following paper describes the developed data 

handling strategies for the reliable and bidirectional transfer of mission data via one of the three 

available radio communication links. 

1 OVERVIEW of SONATE-2 

SONATE-2 is a 6U+-CubeSat which was successfully launched into a 527x505 km SSO on SpaceX’s 

Transporter 10 mission on March 4th, 2024. The satellite was developed by the University of 

Würzburg. An image of the flight model of SONATE-2 is depicted on the left side of Figure 1. The 

main goal of the mission is to verify a novel AI processing platform in LEO. Experiments on this 

platform cover a wide range of applications, including lightning detection, image segmentation, 

object detection and anomaly detection. Two wide-angle cameras and two narrow-angle cameras are 

integrated at each of the two AI payloads to carry out the experiments. Images recorded by these 

cameras are used directly for the training and execution of neural networks on board SONATE-2. 

Other mission objectives include the operation of an amateur radio payload, the testing of a pulse 
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plasma thruster PETRUS [1] and the qualification of MultiView [2], a multi-sensor star sensor 

system.  

      

Figure 1: Flight Model of SONATE-2 (left) and two OBDHs of SONATE-2 (right) 

SONATE-2 features a redundant bus architecture to achieve the mission goals. The satellite bus 

consists of two VHF, two UHF and two S-band transceivers, which all can be used for telecommand 

reception and telemetry transmission. All subsystems are interconnected with each other via both 

CAN busses, which also acts as the main communication medium between individual subsystems. 

All telecommands and telemetry is transferred via these two busses. A total number of four On-board 

data handling computers (OBDH) are integrated into the satellite. The OBDHs are designed to ensure 

that at least two of them are always switched on and the other two serve as a cold redundant reserve. 

Each of the OBDH has access to three external NOR flash devices and uses an Arm Cortex M4 as a 

sole processor. The right side of Figure 1 shows two OBDHs mounted on their interface card. 

SONATE-2’s OBDH use a modified version of the real-time operating system RODOS which was 

developed mainly for satellite missions [3]. Novell generic data processing strategies needed to be 

developed at the OBDH to achieve the mission objectives mentioned before. This paper summarizes 

the implemented strategies, but also gives some insight into the first weeks of operations from the 

OBDH’s perspective. A detailed overview of the first results of the mission can be found in [4].  

2 TELEMETRY and TELECOMMAND HANDLING 

On SONATE-2 all subsystems, except of the two S-Band transceivers, are directly connected to one 

or both CAN busses. For this reason, the decision was made to implement generic telemetry and 

telecommand protocols, simplifying the implementation effort at the OBDH. Instead of implementing 

a specific interface for every subsystem only one interface needs to be implemented. This 

significantly reduced the development time and decreased the potential for critical errors in the overall 

software design.  

2.1 TELEMETRY HANDLING 

The design of SONATE-2’s telemetry interface is largely based on the CCSDS standards of the TM 

Space Data Link Protocol (CCSDS 132.0-B-3) and of the Space Packet Protocol (CCSDS 133.0-B-

2) [5, 6]. Telemetry frames transmitted by SONATE-2 to the ground segment are packed by the 

OBDH into CCSDS source packages and these then into telemetry transfer frames. In accordance 

with the standard, various application process identifiers (APIDs) have been defined on SONATE-2. 

Each APID contains data from one or several different subsystems. A unique CAN ID is assigned to 

each APID used on SONATE-2 via the telemetry database. By broadcasting this CAN ID through the 
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OBDH on the satellite bus, all subsystems are requested to provide their telemetry data for the 

corresponding APID. Upon reception of the CAN ID each subsystem sends out one or multiple CAN 

frames for this APID. The OBDH assembles the individual responses into one complete source 

package. The individual telemetry parameters of each response are assigned to one corresponding bit 

position in the source package via the telemetry database. An export tool was written that generates 

source code from the definition of the telemetry database to simplify and automate the mapping 

process. The export defines which bit in the CAN response frame is to be copied to which bit position 

in the source package. The generated telemetry frames are stored onboard in a ring buffer in the flash. 

During ground station contacts, both online and historical data stored in the buffer can be sent to Earth 

via UHF or S-band.  

Due to the simplicity of the protocol, an OBDH-Simulator was implemented on the PC. This reads 

the current definition of the telemetry database at startup and uses the information contained therein 

to create the telemetry frames. The OBDH-Simulator can be connected directly to the satellite's 

FlatSat via a USB-to-CAN connection and can therefore be used for the development of subsystems. 

This tool played a key part in the success of the mission because problems at the telemetry interfaces 

were identified at an early stage. End-to-end tests with the subsystems could thus be completed 

quickly and successfully. During testing and integration of the engineering and flight models no issues 

in the telemetry interfaces were found.  

2.2 TELECOMMAND HANDLING 

In addition to telemetry processing, telecommand processing has also been greatly simplified in 

comparison with the predecessor mission SONATE-1. Each subsystem has been assigned one or more 

specific CAN IDs which the subsystem uses to receive telecommands. One CAN message contains 

up to eight data bytes. The first byte in the message is used as a command identifier (CMD CODE) 

for the subsystem and the following 7 Byte in the CAN message can be used as parameters of the 

telecommand if necessary. All telecommands can be sent to one or both redundant components. The 

CAN ID, CMD CODE as well as all telecommand parameter are managed in a dedicated 

telecommand database. It is possible to transmit any of the telecommands to the satellite via VHF, 

UHF or S-band. The successful reception of the telecommand is controlled on the satellite via a 

command counter. A command is only executed if its command counter matches the value of the 

command counter at the satellite. The OBDH of SONATE-2 supports immediate as well as time-

tagged telecommands. When time-tagged telecommands are uploaded, they are first saved with an 

absolute or relative timestamp in a passive time-tagged list. All commands in this list must have 

relative or absolute timestamps. It is not possible to mix the timestamp type in time-tagged lists. As 

soon as all the commands for a procedure have been uploaded, the passive list is copied to an active 

list using an immediate telecommand. For relative timestamps in the passive list, the execution time 

is also specified. This ensures that only absolute timestamps are used in the active time-tagged list. 

The OBDH then executes the individual commands in the active list at the specified timestamps. 

The OBDH-Simulator also supports the execution of immediate or time tagged telecommands with 

the previously described format. During the development of a subsystem, it is quickly possible to 

enter telecommands into the database and send them via the OBDH-Simulator. Instead of 

implementing own interfaces to support the development of the subsystem, flight interfaces can be 

used, which reduces the development time. Another advantage of this approach is that errors in the 

telecommand definition are already identified at subsystem level, prior to complete end-to-end test 

with the real OBDH hardware.  

3 SOFTWARE UPLOADS 

In the case that software of one of the satellite components needs to be replaced or modified, the 

OBDH of SONATE-2 also has the task of receiving software uploads for all the embedded 
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microprocessors of the satellite and applications of the AI payload. For redundancy reasons, each of 

the software images was stored three times on each of the four OBDHs. There are two different 

options for the upload process. One option is to upload the complete new software image. This process 

is referred to in the following as a classic software update. Alternatively, it is also possible to upload 

a delta between the software image stored on board and a new software image created on the ground. 

Such updates are further referred to as delta software updates. 

3.1 CLASSIC SOFTWARE UPDATE 

Once the new software was successfully tested on the ground, it must be transferred to the satellite. 

For this purpose, the complete software image is divided into smaller packages. These packages are 

then transmitted as individual command blocks via one of the three available communication links to 

the satellite. The OBDH receives these individual packages and saves them in an external flash 

memory. Upon completion of this upload process the OBDH checks whether the checksum of the 

uploaded image corresponds to the checksum previously pre-calculated on the ground. If this is the 

case, the component or subsystem can be reprogrammed with this new software image. To do this, 

the complete software image is transferred to and installed at the subsystem via the satellite’s CAN 

bus. Figure 2 shows this process.  

 

 
Figure 2. Steps of a classic software update 

 

3.2 DELTA SOFTWARE UPDATE 

Contrary to classic software updates, delta updates, require the difference (delta) between the 

currently installed software image and the new software image to be uploaded to the satellite. This 

has certain advantages if the affected software image is large, and the available communication 

bandwidth for an upload is low. Delta updates are very widespread nowadays and are for example 

used to update Android apps on smartphones and tablets but are still rarely used on embedded 

systems. [7] 

For the calculation of delta updates for binary executable applications, a strategy called sequential 

patching is used. The overall software patch is divided into multiple repetitive sequences each 

consisting of a difference, extra and adjustment section. Figure 3 shows this general structure. The 

difference section contains the changes between the old and the new software image. Information that 

was not available in the old software image is included in the extra section. For data that has not 

changed in the new software, the adjustment section is used. Since addition in embedded software 

mostly only affect the addresses of the existing software, the difference section in particular consists 

of highly repetitive data. Compression algorithms are therefore highly effective to reduce the overall 

size of the software patch. [8] 

Diff 1 Extra 1 Adj 1 Diff 2 Extra 2 Adj 2 … 

Figure 3: Structure of a sequential patch [8] 
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For the compression of the individual patches the open-source library “heat-shrink” was used. Heat-

shrink is a compression library especially designed for the unique constrains of embedded systems 

having limited memory and working without dynamic memory allocation. [9] 

Making use of these algorithms a delta image is computed on ground and uploaded to the satellite. 

This delta image is usually much smaller in size, if the changes in the software are not significant, 

compared to uploading the entire new software image. After the upload is complete the information 

contained in the delta patch as well as the on board saved old software image are used to create the 

new software image. Therefore, after decompression, the individual sections in the delta patch are 

sequentially looped until all changes are applied. Thereby, the data contained in the difference section 

is simply added byte by byte to the old image in order to compute the new image. The bytes in the 

extra section are copied afterwards to the new image. The adjustment section contains the number of 

bytes which are unchanged, so these bytes are directly copied from the old image to the new image. 

After all these steps the new image is reconstructed at the satellite. After verifying the integrity of the 

software image using a CRC, the subsystem can be reprogrammed. Figure 4 shows the individual 

steps graphically.  

 

 
Figure 4. Steps of a delta software update 

3.3 COMPARISION between DELTA and CLASSIC SOFWARE UPDATES 

On CubeSat missions, UHF (either commercial or amateur radio frequencies) is typically used as the 

main communication channel for the downlink and uplink. This frequency range is subject to strong 

interference, especially over Europe, Asia, and North America, which contributes to the fact that not 

all transmitted telecommands are received by the satellite. In our predecessor mission SONATE, 

which also used UHF as the main radio link, mostly less than 10% of the commands sent to the 

satellite were received. In absolute figures, this translates into only around 20 – 30 commands per 

overpass being received by the satellite. Also, ESAs OPS-SAT mission encountered similar 

challenges in LEOP. [10 – 14] 

A classical software update of a software image having for example 100 kByte of data would take at 

least one week, if only 3 kByte of data can be uploaded per overpass. In case of critical problems 

which need to be addressed with this update, a quick response is therefore not easily possible and 

depending on the severity of the problem a mission loss or significant mission delay likely. On ESAs 
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OPS-SAT mission for example 5000 telecommand were required to update the board computer 

software, which took about a week. [14] 

On SONATE-2 we have therefore decided to additionally implement delta updates to be able to 

quickly update the affected subsystem in the event of software bugs being detected after the launch 

in orbit or a new feature is required in the flight software.  

As an example, in the first overpasses over our ground station the number of decoded telemetry 

frames were lower than expected even though the measured signal strength appeared to be high 

enough. Possible solutions were investigated to increase the number of decoded frames. One idea was 

to increase the number of synchronization bytes the UHF radio is transmitting before a telemetry 

frame. Unfortunately, during ground testing it was noticed that this specific telecommand was not 

working as intended. After a deeper code analysis, we noticed that two lines of code were swapped 

around. Therefore, it was not possible to increase the number of synchronization bytes without a 

software update. The corrected software image has a size of 53704 Bytes. By using delta software 

updates only 1227 Bytes are required to be uploaded to the satellite. In this case the required 

bandwidth and upload duration could be reduced by 97.7%.  

This example shows that delta updates are especially useful if you are working on limited bandwidth, 

e.g. if the satellite has a high spin rate, a poor communication link with the ground segment, or you 

are operating in deep space. The big advantage of delta updates compared to classical software 

updates is the small image size required for a software update. By small changes in the flight software 

only a few kilobytes need to be uploaded to the satellite. This saves time and costs if for example 

external commercial ground stations are used to speed up the upload process. Especially in LEOP, 

when the orbit data is preliminary, disruptions in communication with the satellite are not uncommon. 

Delta updates are particularly useful in this phase if problems that have not yet been considered in 

the software version installed on the satellite require a quick reaction by the operation team. Quite 

often either parameter updates or complete software updates are then required to fix or further debug 

the problems observed. The delta update process comes however with the disadvantage of a slightly 

higher memory demand, because the old software image, the delta update and the new software image 

must be saved on board. Also, the computation effort for delta updates is slightly higher than for 

classical updates because the new software image must be regenerated on board. Overall, it can be 

said that the advantages of uploading delta updates clearly outweigh the disadvantages. The following 

Table 1 summarizes the advantages and disadvantages of classical compared to delta software 

updates. 

Table 1. Comparison of Delta Updates vs. Classical Updates (Pros: green/++; Cons: red/--) 

 CLASSICAL UPDATES DELTA UPDATES 

UPLOAD BANDWIDTH -- ++ 

TIME CONSUMPTION -- ++ 

COSTS - + 

MEMORY DEMAND + - 

COMPUTATION EFFORT + - 

POWER DEMAND 0 0 

 

3.4 SOFTWARE UPDATES 

SONATE-2 includes a total of 46 microprocessors, all of which can be reprogrammed in orbit. A 

standardized software update protocol was developed and implemented in the bootloaders of the 

microprocessors to achieve this goal. Each of the processors was assigned a unique identifier (Boot-

ID) via the bootloader. This approach simplified the implementation efforts of software update 

process on the OBDH, because the same protocol is utilized for reprogramming. Only the size, 

memory address and checksum as well as the Boot-ID of the microprocessor to be updated must be 

transferred to the OBDH.  
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As all updates are carried out via the CAN busses and these are connected to the PC via the EGSE, 

the update process could also be carried out via a special EGSE-Software. In the EGSE-Software the 

same update protocol was implemented as in the OBDH’s software. Software updates were therefore 

possible very quickly from the outside. Updates were even possible, when the debug ports of the 

subsystems were no longer accessible once the satellite was in flight-ready state. 

4 PAYLOAD DATA HANDLING 

Another important aspect of the OBDH on SONATE-2 include receiving experiment results from the 

various payloads and subsystems on board. It must also be possible to forward new configuration 

parameters to the subsystems, especially for the AI payload. The configuration parameters of the AI 

include for example IDs of images which should be used for the on-board training of neural networks 

and can therefore be very large. In this context, a dedicated generic payload data processing software 

module was implemented in the OBDH on SONATE-2.  

4.1 LOW-SPEED DATA TRANSFERS 

Since all subsystems of SONATE-2 are connected to one or both CAN busses a generic payload data 

transfer protocol was developed. The protocol was designed in a way that it can be used for all 

subsystems which either require larger amount of configuration parameters not suitable for individual 

telecommands or need to transmit locally saved experiment data to the OBDH. The data flow of the 

protocol is depicted in Figure 5. The start of a transfer is initiated by a telecommand to the subsystem. 

This gives the subsystem the opportunity to carry out preparatory tasks such as clearing memory or 

calculating checksums. The actual data transfer begins with a subsequent command to the OBDH. In 

the first step, the size and checksum of the complete data block are exchanged via the transfer start 

messages. The actual data transfer is then initialized by a corresponding request or announcement 

from the OBDH. The transfer takes place in packets of 256 bytes, each of these packets is protected 

by its own checksum. In the event of errors during the transfer, a single packet can therefore be 

requested again. Transfer rates of up to 3300 Byte/s could be achieved with this protocol. 

 

Figure 5. Data flow of the low-speed data transfer via the CAN-Bus 
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This protocol has already been extensively tested in orbit, with the first image data from the AI 

payload being transferred to the on-board computer. A subsequent transfer of one of the images from 

the OBDH to our amateur radio payload was also successful. The protocol also proved to be very 

useful when it was noticed in orbit that the direction of the control signals to the reaction wheels were 

partially inverted. In order to reverse the direction of the reaction wheels, it was necessary to verify 

the currently set direction, set in the ADCS’ configuration. As these values were not included in the 

standard telemetry, the configuration of ADCS was transmitted as a binary to the OBDH and then to 

the ground via the generic protocol. With the help of this generic protocol the correct direction could 

be set. Furthermore, the developed protocol allows new experiments to be carried out on the 

individual subsystems in the future without having to make changes to the OBDH’s flight software. 

4.2 HIGH-SPEED DATA TRANSFERS 

Besides data transfer via CAN, there is also the option of transferring experiment data from the AI 

payload via SPI to the OBDH. For this interface, a bidirectional communication protocol has also 

been implemented. The protocol again starts with a simple handshake were the size of the data in 

bytes, the CRC and the size of a transfer packet are exchanged between the two participants. Each 

package is identified by a packet number and protected with a CRC. After receiving a package an 

acknowledgment (ACK) message is returned if the CRC and packet number match the expected ones. 

In the case of an invalid CRC is received a not acknowledgment (NACK) is returned. The sending 

end then retransmits the same packet again up to a certain amount of retries. If all packets were 

transferred the receiving end calculates the checksum and the transfer is finished. This protocol is 

used for transferring large amount of data, e.g. to upload new applications or neural networks to the 

AI payload or download experiment results like images and classified scenes. Transfer rates of up to 

220 kByte/s have been measured.  

For development purposes a SPI-to-USB FTDI converter was used to integrate this protocol in the 

EGSE-Software. During development and initial system tests of the AI payload, direct transfers of 

experiment results to the PC were then possible using the same protocols as in the flight version. 

Moreover, it was also possible to transfer images without using radio communication after 

qualification and acceptance tests of our flight model to the PC for analysis purposes. This allowed 

us to quickly verify that our optical components survived the random vibration and shock tests 

without any visible defects. 

5 TIME MANAGEMENT 

Initial task of any OBDH is to provide all subsystems and payloads with an accurate timestamp. These 

timestamps are especially required for the SGP4, sun and magnetic field reference models of the 

ADCS to determine the correct attitude at the correct time over predefined target areas to accomplish 

the mission objectives. For the analysis of the image data of the AI payload and the performance of 

the ADCS, it is also important to know exactly when an image was taken to compare any pointing 

errors of the ADCS between the predicted and the observed scene. 

5.1 TIME KEEPING 

The on-board reference time is provided by a real-time clock (RTC) integrated in the OBDH 

processor, which is driven by an external quartz crystal. The advantage of RTCs compared to timers, 

which are often used in embedded software development, is the possibility to correct the natural 

frequency error of the quartz crystal and thus the time drift by manually setting special hardware 

registers. Another essential advantage is that the time continues to be incremented even if the 

processor is reset. Should the RTC malfunction during the planned one-year operating phase of the 

satellite, the time is also propagated via a normal timer for safety reasons. 
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5.2 TIME UPDATE 

There are two different ways to set the reference time on board of SONATE-2. On the one hand, the 

onboard time can be set via a telecommand, whereby the current timestamp of the telecommand client 

is transmitted to the satellite. This telecommand can be sent via the three available frequency bands 

VHF, UHF and S-band. The disadvantage of this method is an unknown time offset between 

command transmission until the reference time is set on the OBDH.  

On the other hand, the reference time can also be taken from one of the two GNSS receivers. This 

allows a very precise synchronization of the time but requires a stable GNSS fix. In the first GNSS 

experiments, as the satellite was not detumbled (under 1°/s), stable GNSS fixes could not be obtained. 

Since SONATE-2 was successfully detumbled, a stable GNSS fixes was achieved. The GNSS 

position and time were successfully verified. In the future it is planned to use the measured GNSS 

time to update the OBDH’s reference time.  

The following Figure 6 shows all possibilities to update the reference time of the OBDH of SONATE-

2 in orbit. The violet, yellow and orange solid arrows symbolize the path of the reference time from 

mission control center (MCC) via ground segment via radio transceivers via the satellite bus to the 

OBDH. Whereas the green dotted lines represent the path from the GNSS receiver to the OBDH. 

 
Figure 6.Overview of the available time synchronization paths on SONATE-2 

 

5.3 TIME DISTRIBUTION 

For the distribution of the reference time on the satellites, the OBDH periodically transmits the current 

onboard time in millisecond resolution on both CAN buses every 5 seconds. Subsystems that require 

this time can listen to the CAN message and thus correct their time to the broadcasted reference time. 

These paths are also shown with blue stitched arrows in Figure 6. Between the individual CAN 

messages, each subsystem must propagate its own time in order to remain up to date.  

5.4 TIME DRIFT CORRECTION 

In orbit, we observed a slight drift in the reference time during daily operation. In LEOP, the reference 

time was thus set by telecommands during each overpass over our ground station in Würzburg. A 
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more precise analysis of the received timestamp to the timestamp generated on board in the telemetry 

frames showed a linear drift of approx. 800 ms per day. This correlation can be clearly seen in Figure 

1, where the time difference between the received and generated time was plotted over several contact 

phases.  

 
Figure 7. Drift of the reference time before the drift correction 

A correction value for the RTC was then calculated from the slope of the linear fit and sent to the 

satellite. In the following days, the time difference between the received and generated time was 

recorded again. The result of this experiment is shown in Figure 8. After the correction was applied, 

no signification drift of the reference time was observed anymore, and the time error stayed always 

less than a second. The slight variation in the order of 30 ms between the individual overpasses are 

likely caused by temperature variation at the crystal. In summary, it can be said that drift correction 

has significantly reduced the time drift and thus allows in the future a more precise execution time of 

the planned experiments.  

 
Figure 8. Drift of the reference time after the drift correction 



The 4S Symposium 2024 –A. Maurer et. al. 

 
11 

6 CONCLUSION  

This paper gave a brief overview about the generic data processing strategies implemented at the 

OBDH of SONATE-2. By using these generic protocols more than 3000 immediate and time-tagged 

telecommands were successfully received and executed by SONATE-2 in the first month of 

operation. During this time also more than 150000 unique source packages have been transmitted and 

received in Würzburg by our own ground station. The OBDH was running thereby continuously 

without any problem. After 37 days in orbit the first reset of the OBDH is still to come. Already the 

first images of the AI payload were transferred to the OBDH and later to the ground using the generic 

protocols. One of these images was also forwarded to our radio amateur payload and transmitted to 

Earth as a SSTV image over Easter. It was furthermore possible to correct the OBDH’s time drift, 

allowing a more precise execution timestamp of the planned experiments.  

Additionally, a new software update technique was introduced. With the help of delta updates the 

required bandwidth and upload duration of software updates can be reduced significantly by more 

than 95%. Delta updates are especially useful for future interplanetary CubeSat missions where the 

communication bandwidths are much lower than in LEO.  

All of these points clearly demonstrate the stability and reliability of the implemented generic data 

processing interfaces. The developed protocols together with the implemented OBDH-Simulator and 

EGSE-Software enabled errors in the database, and software to be identified and corrected at an early 

stage. This could already be done in the development phase before complete end-to-end tests had to 

be carried out with the OBDH. It is important to emphasize that the use of the discussed protocols 

together with stable time management contributed significantly to the successful execution of the 

satellite project.  
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