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ABSTRACT

The Milani CubeSat mission aims to observe and study the Didymos binary system after deploy-
ment from the Hera mothercraft. The image processing of Milani uses optical observables of the
primary body extracted from images to estimate its center of mass and enable autonomous on-
board navigation. The algorithm employs a data-driven approach, with coefficients tuned based
on observations and new data that can also be collected from other spacecraft. Using an updated
version of the primary shape after the DART mission, a significant drop in performance has been
observed due to the inability of the algorithm to establish a meaningful relationship between im-
ages and phase angles, challenging the original design of the image processing algorithm. In
this work, this issue is investigated and proven to be caused by the oblate shape of the primary.
Also, different alternative approaches are proposed considering additional parameters extracted
from images, using polynomial chaos expansion, neural, and convolutional networks. The find-
ings provide valuable insights for the adoption of data-driven methods in interplanetary missions,
emphasizing the need for robust and adaptable algorithms to account for changes in target char-
acteristics, especially when considering small-body missions.

1 INTRODUCTION

Milani is a 6U CubeSat that will be released in the Didymos environment by the Hera [15] mothercraft
in early 2027. Milani will be released during a dedicated operational phase after an early characteri-
zation of the binary system. The Didymos system consists of a primary and a secondary body called
Didymos (D1) and Dimorphos (D2), respectively. A peculiarity of the mission is that at the moment
of the CubeSat release, the system will have already been observed closely at least twice: briefly by
the DART [11] mission before impact on D2, and for a longer period by Milani’s mothercraft Hera
[15].
To accomplish its objectives, Milani is designed with both orbital and attitude control capabilities.
Both the Guidance, Navigation, and Control (GNC) and Image Processing (IP) have been developed
by the Deep-space Astrodynamics Research & Technology group (DART)1 at Politecnico di Milano
using Simulink 2020a2 for its simplicity and the capability to convert high-level rapid prototyping
code in Matlab/Simulink as C-code via auto-coding. This capability allows for fast iteration between
the design of the algorithms and their integration with the onboard software.
Milani’s onboard navigation strategy relies on optical observables of D1 extracted from images and
then used in an on-board Extended Kalman Filter (EKF). To do so, a robust, simple, flexible, and
accurate IP method is needed. D1 has been chosen as the main target of the IP since it is expected to
be the largest, most visible, and regular body of the binary system.

1https://dart.polimi.it/, last accessed: 27th May 2023.
2https://www.mathworks.com/products/simulink.html, last accessed: 27th May 2023.
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To account for the irregularities of D1 and to benefit from observations of the mission first by DART
and then by Hera, the IP has been designed as a data-driven pipeline since the early stages of the
project. Its architecture has been conceived to stay untouched from the end of development (Summer
2022) until the deployment within the binary system (Winter 2027). New observations about the
properties of the system can then be used to tune the coefficients of the main data-driven functions
used in different steps of the IP algorithm. To do so, new images are needed. These can be either
synthetically generated or acquired from real sensors. A detailed description of the IP is out of the
scope of this work but can be found in [18], [20]. Only a brief overview is given hereafter.
The IP can operate in three different modes, in order of increasing complexity these are called: COB,
WCOB, and SSWCOB. In the first, the center of brightness (CoB) is used as an estimate of the center
of mass (CoM) of D1, while in the latter two, a scattering correction is applied to the CoB coordinate
to shift the estimated CoM of D1 towards the true CoM. This correction is critical when considering
high-phase angles and the irregularity of a body such as in the case of asteroids and comets. The
scattering correction is represented by the following equation:[

CoFx

CoFy

]
=

[
CoBx

CoBy

]
+ ω · µ(Ψ, δ) ·

[
cos(Φ)
sin(Φ)

]
(1)

where Ψ is the phase angle, µ is the magnitude in pixels of the correction vector between CoB and
CoM, Φ is an orientation function, and ω is a weight vector that can be used to tune the correction
term. Both in the WCOB and SSWCOB, ϕ and µ are data-driven functions that depend on parameters
extracted from a dataset of images. On the other hand, Ψ is a data-driven function only in the WCOB,
while in the SSWCOB it is evaluated directly from data from the Sun sensor.
By design, the IP of Milani has been structured as a pipeline that uses coefficients to express these
three data-driven functions. The coefficients can be changed throughout different phases of the Milani
mission and through data obtained from other spacecraft. Major changes in the pipeline were thus not
expected for the IP.
However, a preliminary assessment using an updated version of the shape model of D1 has proven
deeply challenging for the current architecture. In this work, the authors address the nature of the
issue, and its impact on the current pipeline, offering a solution that can be easily implemented on
board, sharing relevant lessons learned regarding the adoption of data-driven IP methods for inter-
planetary missions, and comparing together different alternatives.

2 CHALLENGES AFTER DART IMPACT

Prior to the arrival of DART, D1 was expected to be a top-shaped, mild irregular body with a volume
equivalent diameter of 780± 30 m. Its principal axes were estimated to be 832m± 3% m, 838m±
3%, and 786 m ± 5% and were computed using radar observations [9], [10]. After DART, a new
estimate of the shape of D1 returned a more oblate body with principal axes equal to 849m± 5.6m,
851 m ± 5.6 m, and 620 m ± 5.6 m [13], the last axes suffering the biggest variation. This change,
especially across the z-axis, has been observed to cause a major drop in performance of the WCOB
mode of the IP of Milani. On the other hand, other changes in the model, such as the distribution of
boulders over the surface, did not play a role, since the IP only uses global and not local properties of
D1.
Interestingly, the drop in performance has been observed to be caused by the data-driven function Ψ
used to estimate the phase angle from the image. In its original design, a useful relationship could be
established between the eccentricity of the ellipse fitting the blob of pixels associated to D1 with the
same normalized second central moment and the phase angle Ψ.

ESA GNC-ICATT 2023 – M. Pugliatti 2



To visualize this relationship for different values of scaling across the z-axis sz, datasets made of 5000
images each, randomly generated in a spherical shell about D1 with an excursion of Ψ up to 120 deg,
are used. For the purpose of this study, images are rendered in Blender using the Cycles rendering
engine at 1024 × 1024 pixels with a field of view of 5.5 deg. The images are also rendered with an
ideal pointing towards the CoM of D1 and with a random boresight rotation. Domain randomization is
applied by adding a variable artificial noise to each image and by changing the albedo and coefficients
of the scattering law used at each acquisition.
When considering the original scale of D1 from [9] (sz = s0), a second-order polynomial has been
chosen to represent the Ψ-e relationship, as illustrated in Figure 1. Such a relationship was also tested
for a variation of the scale across the z-axis up to ±5 % of the original value s0 [16] and proved to
cause minor fluctuations in the performance of the IP.

(a) (b)

Figure 1: Phase angle Ψ as a function of the eccentricity of the blob of pixels associated with D1 for different
values of scaling across the z-axis sz for 5000 images randomly distributed about D1.s0 represent the scale of
D1 before the DART mission update.

However, as it is possible to see in Figure 1 when considering higher values of oblateness, a clear
functional relationship cannot be established anymore considering the eccentricity as the sole param-
eter. This is caused by a specific interaction between the ellipse fit and oblate objects.
As it is possible to see in Figure 2 by visualizing e as a function of polar angles around D1, increasing
the oblateness of the body passing from a sphere, to D1 with sz = s0, to D1 with sz = 0.78s0, the
eccentricity passes from having one minimum to multiple ones. When considering a spherical object,
the eccentricity of the fitted ellipse monotonically increases with the phase angle, as it is possible to
see from Figure 3. This allows to establish a clear and useful relationship. On the other hand, when
considering a highly oblate object, the minimum eccentricity is not associated anymore with the
projection of the object at low phase angles. Given the irregularity of the object, a considerable offset
may be present and the minimum eccentricity could be achieved with a proper combination between
phase angle and view of the object that does not occur at low phase angles. This phenomenon creates
the bifurcation visible both in Figure 1 and Figure 2.
It is also noted here that both the local irregularities over D1 shape and the presence of D2 in the
images act purely as disturbances. This is also clearly visible from Figure 2, which illustrates what
happens when a spherical body is substituted to D1 and subsequently when D2 is removed from the
rendering software.
In conclusion, when considering more oblate shapes for D1, the eccentricity alone cannot be used as a
parameter to predict the phase angle Ψ directly from images. In the next section, the authors provide
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(a) (b)

Figure 2: (a) Eccentricity of the blob of pixels associated to D1 in polar coordinates for three different cases. (b)
Phase angle Ψ as a function of the eccentricity of the blob of pixels associated with D1 with sz = s0 compared
with a spherical body with and without D2.

alternative approaches to perform such an estimate while considering additional parameters that can
be extracted from images that may be more suitable for the given task.

3 PROPOSED APPROACHES

The dataset of 5000 images in which D1 has sz = 0.78s0 is passed through the IP to generate a set
of additional variables that could be extracted onboard. The purpose of this activity is to understand
which additional variables that can currently be extracted onboard can be used to establish a mean-
ingful relationship with the phase angle and recover performance. Each image is thus associated with
a feature vector composed of 14 components, divided into three main groups: associated directly with
the blob of pixels of D1 (fD1), associated with the blob of pixels of the edge region of D1 (fedge), and
combined properties between fD1 and fedge (fcomb). Finally, for each image, a feature vector of 14
elements is composed as fx = [fD1, fedge, fcomb].
To compose fD1 and fedge the area (νarea), perimeter (νper), circularity (νcirc), extent (νext), and ec-
centricity (νe) are put together as follows:

fD1 = [log10(νarea), log10(νper), νcirc, νext, νe]
D1 (2)

fedge = [log10(νarea), log10(νper), νcirc, νext, νe]
edge (3)

On the other hand, to compose fcomb more complex relationships are used based on previous experi-
ence. ν1 is evaluated as the ratio between the perimeter of the blob of pixels of D1 and the sum of the
perimeters of the multiple edge regions detected in the image. ν2 is evaluated as the ratio between the
perimeter of the blob of pixels of D1 and the sum of the areas of the multiple edge regions detected
in the image. ν3 is computed as a summation over the entire image of the normalized activation map
after the application of a Sobel filter to the image. Finally, ν4 is computed as the ratio between the
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Figure 3: Mosaic of different views of a sphere (left), D1 with sz = s0 (center), and sz = 0.78s0 (right) at
different equatorial angles θ (from top to bottom 120, 90, 60,30, and 0 deg). The red curve represents the
fitting ellipse with the same normalized second-order moment.

eccentricity of the blob of pixels of D1 and the eccentricity of the edge region. These components are
then put together as:

fcomb = [tanh(ν1), tanh(ν2), log10(ν3), ν4]
comb (4)

In the next section, five different alternatives are designed using either the dataset made of features fx
or directly the images. To allow a fair comparison between the different methods, all are allowed to
use 4000 samples for training, 500 samples for validation (if necessary), and 500 samples for testing.
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3.1 Polynomial chaos expansion

3.1.1 Introduction to Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) is a nonlinear uncertainty quantification technique, introduced
by Wiener in 1938 for the fluid dynamics domain [1], and then expanded to be used in different
fields to both estimate the impact of uncertainties on some quantities of interest (QoI) and evaluate
the evolution in time of an uncertain state. The main advantages of PCE are related to its ability to
provide high-order accurate estimation of the statistics of the QoI, while requiring significantly less
computational effort of other similar methods, such as Monte Carlo simulations [8]. In PCE, the
solution is approximated using a series expansion based on some orthogonal polynomials. Within
this framework, quantities of interest x̂ can be written as [3]

x̂(ξ) =
∑

α∈Λp,d

cαψα(ξ) (5)

where Λp,d is a set of the multi-index of size d and order p defined on nonnegative integers, ξ =
[ξ1, . . . , ξd] is the set of input random variables, in which each element ξi is an independent identi-
cally distributed variable. The basis functions {ψα(ξ)} are multidimensional spectral polynomials,
orthonormal with respect to the joint probability measure ρ (ξ) of the vector ξ∫

Γd

ψα(ξ)ψβ(ξ)ρ (ξ) dξ = δαβ (6)

with Γd representing the d-dimensional hypercube where the random variable ξ are defined and δαβ

is the Kronecker delta function. Thus, the basis functions choice depends only on ρ (ξ). For instance,
Hermite polynomials are the basis for normal random variables, while Legendre orthogonal polyno-
mials are bases for the uniform distribution [1].
Generation of a PCE series means computing the generalized Fourier coefficients cα by projection of
the exact solution x(ξ) onto each basis function ψα(ξ), truncated at the total order p

cα = E [x(·)ψα(·)] =
∫
Γd

x(ξ)ψα(ξ)ρ(ξ) dξ (7)

PCE coefficients can be estimated by performing a Galerkin projection of the governing stochastic
equations onto the {ψα(ξ)} subspace (the so-called, intrusive method), or solving a least-square re-
gression or pseudospectral collocation (in the so-called, non-intrusive methods) [6]. The pseudospec-
tral collocation solves directly the stochastic integral in Eq. (7) and thus it requires a straightforward
function that links the input uncertainty with the QoI. In case of implicit or hidden connection be-
tween inputs and outputs, the least-square regression is the most suitable approach, since it does not
require the outputs evaluated in specific collocation points.
The least-square regression is based on a random sampling of the uncertainties, that are then used to
compute a pool of quantities of interests. The PCE coefficients are computed starting from this syn-
thesized samples x (ξ), imposing that the sum of their difference with respect to the PCE expansion
x̂(ξ), at the sample points ξi is minimized, that is [6]

cα ≃ argmin
{c̃α}

1

M

M∑
i=1

x(ξi)−
∑

α∈Λp,d

c̃αψα(ξi)

2

(8)

where M is the number of considered samples. The solution to this problem can be conveniently
written in matrix form as (

ΨTΨ
)
c = ΨTX (9)
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where c ∈ RP×n is the least-squares approximation of the PC coefficients, X ∈ RM×n is the matrix
containing the realizations of the vector x(ξ) and Ψ ∈ RM×P is the measurement matrix, defined as

Ψ[i, j] = ψαj
(ξi) with i = 1, . . . ,M, j = 1, . . . , L (10)

The number of samplesM needed is not straightforward and it depends basically on the uncertainties,
the polynomial basis, and the required accuracy.

3.1.2 The Arbitrary Polynomial Chaos

PCE requires the inputs to have a prescribed distribution, that must also enjoy the existence of a set
of associated spectral orthogonal polynomials. However, natural phenomena and uncertainty in engi-
neering cannot be always described using predefined known probability distributions. For this reason,
the arbitrary Polynomial Chaos (aPC) technique has been introduced [5]. Under this framework, the
basis functions are not drawn from the Wiener-Askey polynomials according to the input distribution
[1], but they are constructed starting from the input data values, that can be provided in any form.
Defining the polynomial of degree k in the (1-dimensional) random variable ξ

ψk (ξ) =
k∑

l=0

a
(k)
l ξl, with k = 0, . . . , p (11)

the problem associated with the arbitrary Polynomial Chaos (aPC) is to determine the polynomial co-
efficients a(k)l for each ψk, such that the polynomial forms an orthonormal basis for the input arbitrary
distribution. Starting from Eq. (6), the condition of orthogonality for each polynomial ψk with all the
lower order polynomial, from 0 to k − 1, can be written as∫

Γ

(
j∑

l=0

a
(j)
l ξl

)(
k∑

l=0

a
(k)
l ξl

)
dξ = 0 with j = 0, . . . , k − 1 (12)

The additional condition
a
(k)
k = 1

that acts as an intermediate surrogate for the normality condition, is added to Eq. (12) in order to close
the system.
Recalling that the l-th order moment of the random variable ξ is

µl =

∫
Γ

ξl dξ

the system in Eq. (12) can be rewritten in matrix form for each k as [5]
µ0 µ1 · · · µk−1 µk

µ1 µ2 · · · µk µk+1
...

... . . . ...
...

µk−1 µk · · · µ2k−2 µ2k−1

0 0 · · · 0 1




a
(k)
0

a
(k)
1
...

a
(k)
k−1

a
(k)
k

 =


0
0
...
0
1

 (13)

Thus, it is possible to compute the orthogonal basis starting only from the moments, without the need
to determine the full distribution function. Moreover, the basis can be determined only if moments
up to order 2d− 1 exist. In case the input is provided as a set of points, this condition is equivalent to

ESA GNC-ICATT 2023 – M. Pugliatti 7



having at least k distinct values.
Once the coefficients have been determined, the orthogonal basis should be also normalized, by eval-
uating its norm as

∥ψk (ξ)∥ =

(∫
Γ

ψ2
k (ξ) dξ

) 1
2

(14)

and redefining all the polynomial coefficients as

a
(k)
l =

a
(k)
l

∥ψk (ξ)∥

These polynomials can be then used as the basis for PCE series since it has been proven they enjoy
the same properties of convergence and accuracy [5].

3.1.3 Polynomial Chaos and Milani IP

PCE, and aPC, have been introduced and exploited for uncertainty quantification. However, recently
PCE has been proven to be an effective technique also in other fields, e.g., it has been used to suc-
cessfully propagate all-in-once a bundle of trajectories in a deterministic setting [14]. Starting from
this point, a wider use for PCE in data-driven approaches can be devised since it shows some useful
properties. As a matter of fact, PCE (and aPC) can be used as an effective interpolation method, not
requiring to define a-priori the interpolant functions but selecting them automatically starting from
the input samples, so that they possess spectral convergence with respect to the input variables. Fur-
thermore, the same input samples can be used to find the generalized Fourier coefficients exploiting
the least-squares approximation technique.
These desirable properties can be exploited to overcome the issue characterized in the previous section
caused by D1 oblateness by using the feature vector fx for every image as input ξ for PCE, in order
to estimate the phase angle of Didymos. Since it is not guaranteed that they are statistically indepen-
dent, Principal Components Analysis (PCA) is exploited to remove correlation among the different
features. PCA output is then fed to aPC to build the orthogonal basis since feature distribution is not
known a-priori. Thus, the procedure to estimate the phase angle of D1 for Milani, exploiting PCE and
labeled PCE-Full, can be summarized as:

1. All the features extracted from the images fx are used as inputs for the PCA to find the principal
components coefficients C, and the explained variance s;

2. Principal components are computed as ξ = Cfx and sorted by their explained variance;

3. The first dth variables are used to estimate the statistical raw moments and in turn the polyno-
mial basis coefficients a(k)l (as per Eq. (13)), and the basis polynomials (Eq. (12));

4. The principal components associated to the first M = 4000 images are used to compute the
PCE coefficients cα (Eq. (9));

5. The performance of the algorithm is evaluated by comparing the values predicted by the PCE
(using Eq. (5)) with respect to the exact phase angle of the last N = 500 samples.

An alternative methodology, labeled PCE-Res, can be devised to perform the PCA only on the first
dth features, following the sorting order given by point 2. This approach can help the IP when per-
formed on-board since it reduces the number of features that should be extracted from each image.
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3.2 Neural network

A Hyper-parameter search is performed varying the number of hidden layers, the number of neurons,
and the activation function of a simple feed-forward Neural Network (NN) using the Matlab regres-
sion learner application. The first and last layers of the network are made respectively of 14 and 1
neurons. During training, PCA is enabled on the input variables. As the output of the hyper-parameter
search, the best architecture is found to be made of 3 hidden layers, made respectively of 124, 8, and
46 neurons, all using ReLU as an activation function.
In this work, the NN is used to investigate whether or not a network can yield better results than PCE
as a universal interpolation function.

3.3 Convolutional networks

An approach is also designed that makes use of Convolutional Extreme Learning Machine (CELM)
and Convolutional Neural Network (CNN) that is working directly over the images, bypassing the
feature vector fx. The purpose of this approach is to use the best performing CNN to determine
whether or not a better estimate can be performed directly from the images. This could provide a hint
about the completeness of the 14 features selected to represent each image and whether additional
information can be used from the images to estimate Ψ that is not currently explicitly encoded by the
feature vector.
The training strategy used in this work is the same as the one illustrated in [19] while the images are
preprocessed with the same algorithm illustrated in [17]. Both are only briefly described in this work.
The training of the networks is performed using a Tesla P100-PCIE 16Gb GPU, with a 27.3 Gb of
RAM in Google colab3.
Following the same procedure illustrated in [19], 540 CELM hierarchically organized convolutional
pooling architectures are generated. These alternate sequences of convolutions, activation functions,
and pooling until the generation of a latent feature vector [7]. Training happens by flowing forward
the dataset on the architectures to generate such vectors which are then linked with the target output
via weighted connections β, as illustrated in Figure 4.

W,b

128

12
8

B

Ψ

Fully Connected Layer
Output

Flattening(X)Input

(Y)

β

C1 C2 Cn

Figure 4: Visual representation of the architecture of the convolutional networks used in this work.

In the CELMs, the weights and biases of the network are set randomly at initialization, while the
weights between the latent vector and the output layer are found via a regularized least-square method
[7], [12]. The advantage of using CELMs in this stage is motivated by the very fast training time,
which allows for efficient exploration of the architecture design space [4]. A thorough architecture
design search involves the weights and bias initialization strategy (Random, uniform, orthogonal), the
type of activation function to be used (none, ReLU, leaky ReLU, tanh, sigmoid), the pooling strategy
to be used (mean or max), the number of sequences of convolution, activation function, and pooling

3https://colab.research.google.com/, retrieved 27 of May, 2023.
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to be used in the architecture (from 2 to 6), and the values of the regularization parameter of the
least-square problem (from 0.0001 to 10000 in increasing order of magnitudes).
After finding the optimal architecture setup, the CNN is trained at varying values of batch size (B),
learning rate, and epochs. The best performing architecture is then selected as the one represented
by the weights and biases at the minimum value of mean squared error on the validation set. The
architecture of the CNN (which up to the fully connected layer FC6 is the same as the CELM) is
summarized in Figure 1 using TensorFlow 2.10 notation.

Table 1: Architecture of the 6 layers CNN. The max pooling strategy and the normalized ReLU are used. The
networks has a total count of 2,884,737 parameters.

Layer acronym Layer type Output Number of parameters
I (InputLayer) (None, 128, 128, 1) 0

C1 (Conv2D) (None, 128, 128, 16) 160
A1 (nReLU) (None, 128, 128, 16) 0
P1 (MaxPooling2D) (None, 64, 64, 16) 0
C2 (Conv2D) (None, 64, 64, 32) 4640
A2 (nReLU) (None, 64, 64, 32) 0
P2 (MaxPooling2D) (None, 32, 32, 32) 0
C3 (Conv2D) (None, 32, 32, 64) 18496
A3 (nReLU) (None, 32, 32, 64) 0
P3 (MaxPooling2D) (None, 16, 16, 64) 0
C4 (Conv2D) (None, 16, 16, 128) 73856
A4 (nReLU) (None, 16, 16, 128) 0
P4 (MaxPooling2D) (None, 8, 8, 128) 0
C5 (Conv2D) (None, 8, 8, 256) 295168
A5 (nReLU) (None, 8, 8, 256) 0
P5 (MaxPooling2D) (None, 4, 4, 256) 0
C6 (Conv2D) (None, 4, 4, 512) 1180160
A6 (nReLU) (None, 4, 4, 512) 0
P6 (MaxPooling2D) (None, 2, 2, 512) 0

FC6 (Flatten) (None, 2048) 0
D1 (Dense) (None, 512) 1049088

DO1 (Dropout) (None, 512) 0
D2 (Dense) (None, 512) 262656

DO2 (Dropout) (None, 512) 0
D3 (Dense) (None, 1) 513

4 RESULTS

From the PCA analysis, the components of the feature vector fx are ordered in decreasing role of
importance according to the RRelieF metric [2] as illustrated in Table 2. It is noted that the eccen-
tricity of the blob of pixels associated with D1 is still the most important feature, as in the original
relationship used in the WCOB of the IP of Milani.
Considering the PCE approach, the number of variables considered in the results varies from 1 to 12,
in order to establish how many features are needed as inputs. It is important to note that even if the
number of features is 14, the last 2 are ignored since they describe less than 0.01% of the variance.
Figure 5 shows the error histograms between the true and predicted phase angle of the PCE at varying
numbers of inputs considered following the order in Table 2 for the PCE-Full and PCE-Res methods.
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Table 2: Otput of the PCA: features of fx ordered in descending order using the RRelieF metric.

Feature RRelieF
νD1
e 1.8487e-03
νD1
ext 1.5718e-03

log10(ν3) 1.3916e-03
ν4 1.1676e-03

log10(ν
edge
area) 9.5524e-04
νD1
circ 8.6640e-04

νedgee 6.0699e-04
log10(ν

edge
per ) 5.4506e-04
νedgeext 2.3647e-04

tanh(ν1) 7.1865e-05
tanh(ν2) -2.9021e-05

νedgecirc -2.3132e-04
log10(ν

D1
area) -3.6348e-04

log10(ν
D1
per) -1.0600e-03

Table 3: Performance comparison between the methods considered in this work for the estimation of Ψ.

Value WCOB PCE-Full PCE-Res NN CELM CNN
µ [deg] 8.349 0.666 0.580 0.899 -1.453 0.854
σ [deg] 25.026 9.168 9.560 8.472 17.145 4.832

Q67 [deg] 24.963 3.447 3.863 3.169 6.310 2.690
Q95 [deg] 35.029 16.651 16.869 15.433 26.161 8.724

Another visualization of the same error is illustrated in Figure 6 which lists the values of σ andQ95 for
both the PCE-based methods. Considering up to 9 input features gives the minimum value of variance
for both methods. This value is thus considered for the comparison of the PCE-based methods with
NN, CELM, and CNN ones.
Considering the same test set of 500 samples for each method, the error is computed as ε = Ψtrue −
Ψpred. In Figure 7 is possible to see a visual comparison of the histogram errors of the different
methods. Also, the performance of the WCOB is visualized out of interest and as representative
of the original formulation of the IP of Milani considering only νD1

e as a parameter to estimate the
phase angle. The performance of all methods is also summarized in Table 3, reporting for each one
the mean, variance, Q67, and Q95 values. Considering both Figure 7 and Table 3 the alternatives
considered can be divided into three main groups. The first one is represented by the original version
of the IP of Milani (WCOB) and the CELM methods, both performing very badly. This was expected
from both cases. The second group is represented by the PCE-based methods and the NN. Both
achieve similar metrics, also similar to the previous performance of the original IP of Milani when
considering sz = s0 (for reference, µ = −6.114 deg, σ = 7.365 deg, Q67 = −3.117 deg, and
Q95 = 6.319 deg). Finally, the third group is represented by the CNN, that outperforms all previous
methods considered.

5 CONCLUSIONS

In this work, the authors have addressed an issue caused by an unforeseen major update over the
oblateness of D1, the primary body of the Didymos binary system, on one of the modes of the IP of
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Figure 5: Histogram of the phase angle errors for a different number of inputs in the aPC. In (a) and (b) PCA
is performed on all the IP features while in (c) and (d) on a subset of IP features equal to the number of the
prescribed aPC inputs.

Milani. After the visit of DART, a preliminary update of the shape model estimated a 22% change in
sz, the scale across the principal axis passing by the poles of D1. This unforeseen change exceeded the
5% value considered from previous radar observations and assumed during the design of the IP and
caused D1 to be more oblate than expected. In this work, the authors have characterized how different
values of sz affect the performance of the original version of the IP of Milani and determined that the
cause of the performance drop is due to the particular interaction between the ellipse fitting procedure
with an oblate object, which in the original version of the IP of Milani affects the estimate of the
phase angle.
Additional features have been extracted from the image and a PCA analysis has been performed to
identify the most relevant ones that can be used to establish a relationship with the phase angle. Of the
different methods considered, the CNN performed the best, hinting that added filtering capabilities
played a role in generating more successful feature vectors. On the other hand, PCE has demon-
strated to be an excellent alternative even outside its traditional field of application, retaining similar
performance with respect to the previous implementation of the IP and against NN approaches, that
however are not fully explainable. It is also noted that the PCE implementation was limited to 3rd-
order polynomials with symmetrical expansions. Differential expansions could have provided better
performance and are left for future studies. Ultimately, PCE will be considered for onboard imple-
mentation given its simplicity, flexibility, and satisfactory level of performance compared with the
other methods analyzed.
Finally, it is emphasized that the full datasets with sz = 0.78s0 and sz = s0 are made publicly
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Figure 6: Heatmaps for standard deviation and 95-ile of phase angle error for a different number of inputs in
the aPC. In (a) and (b) PCA is performed on all the IP features while in (c) and (d) on a subset of IP features
equal to the number of the prescribed aPC inputs.

Figure 7: Histogram comparison between the methods considered in this work for the estimation of Ψ.

available for the interested readers at the following link together with the values illustrated in the
results section, and expansion coefficients for the aPC and PCE: https://zenodo.org/record/7962714.
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APPENDIX

In this section, the coefficients for the PCE-based methods are listed. In Table 4 is possible to see
the polynomial coefficients for the aPC basis from the 1st to the 9th principal components while the
PCE coefficients are illustrated shortly after. All coefficients are also available in mat format in the
PCEFull9.mat variable that can be downloaded from https://zenodo.org/record/7962714.
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Table 4: Polynomial coefficients for the aPC basis from the 1st to the 9th principal components with k0t0 = 1
while all other values not listed are 0.

N 1 2 3 4 5 6 7 8 9
k1t0 -13.5569 -2.70314 -5.71644 -11.2045 -3.37058 -6.30749 -24.4469 -11.8573 -15.5978
k1t1 1.66103 -3.61919 5.37342 10.708 -12.8744 -15.4522 20.1465 22.0563 -27.6226
k2t0 171.724 7.08328 16.8619 37.1778 4.22815 16.108 86.6293 47.9511 86.2179
k2t1 -41.7485 20.1739 -31.6487 -69.2988 27.354 79.8323 -156.745 -177.172 314.618
k2t2 2.52353 12.59 14.4096 32.017 39.3329 96.4759 70.2225 162.492 285.596
k3t0 -1972.28 -15.0084 -45.3044 -155.854 -5.1307 -33.9968 -240.88 -190.194 -338.869
k3t1 719.989 -67.9534 128.468 396.115 -53.5162 -240.801 862.591 1015.75 -2030.82
k3t2 -87.2702 -92.4898 -115.802 -322.954 -154.628 -536.786 -936.301 -1767.48 -3973.17
k3t3 3.51218 -38.4406 33.1872 83.3182 -111.775 -374.261 320.37 999.161 -2547.25

These are the PCE coefficients in lexographical ascending order (from 0 to 219):

0.0261, -0.011, -0.012, 0.00595, 0.0524, -0.0117, 0.0113, -0.0132, -0.00833, -0.00503, 0.17, 0.00155, 0.0106, 0.0357,
-0.00359, 0.0164, -0.147, -0.00344, -0.00737, 0.0252, 0.00131, 0.0256, -0.0171, 0.00486, 0.00731, 0.0109, -0.0276,
-0.00524, -0.0144, -0.0202, -0.0396, 0.0139, -0.0027, 0.00239, -0.0051, 0.0259, 0.0221, -0.00297, -0.000336, 0.00394,
0.00363, -0.00455, -0.00179, -0.00232, -0.0126, -0.0529, -0.00191, 0.00609, -0.000579, 0.0106, -0.0188, -0.00188,
-0.000987, -0.0267, 0.00124, -0.0545, -0.184, -0.0107, 0.016, -0.00779, 0.0036, 0.00912, -0.00804, -0.007, -0.000509,
-0.00609, -0.0168, -0.00953, -0.00318, -0.0145, 0.00915, -0.000737, -0.00313, 0.000443, 0.00271, 0.000266, 0.0148,
-0.193, -0.0415, -0.00426, -0.0195, -0.0117, 0.00652, -0.119, -0.0402, 0.023, -0.00337, -0.00498, 0.00774, 0.00537,
-0.013, -0.0136, -0.0122, 0.0187, -0.0177, 0.000263, -0.00396, 0.00799, 0.0143, -0.0105, 0.000795, -0.00481, 0.0118,
0.0114, 0.0106, 0.0271, -0.00904, -0.00273, 0.00855, 0.00695, 0.00418, 0.00465, -0.00257, -0.00961, -0.0176, 0.0264,
0.0197, 0.0178, 0.033, 0.0148, -0.359, 0.025, 0.0128, 0.0248, 0.0077, -0.0125, -0.00818, -0.0048, 0.00884, 0.00333,
-0.0163, -0.00975, -0.0114, 0.00202, 0.00914, -0.00655, 0.00161, -0.00564, 0.00471, 0.00591, 0.013, -0.0478, -0.0142,
0.00135, -0.00371, 0.00679, 0.000787, -0.0389, -0.0837, -0.014, 0.00746, -0.0237, -0.0153, -0.0254, -0.0132, 0.00503,
0.0135, -0.0372, -0.0226, -0.0236, 0.0332, 0.0174, 0.0594, 0.0232, 0.0785, -0.132, 0.0116, 0.0159, 0.0122, 0.00156,
0.0122, -0.0255, -0.00238, -0.00191, 0.015, -0.0161, -0.00358, -0.00114, -0.000936, 0.000418, -0.00953, 0.00129,
0.0053, -0.00124, 0.00357, -0.00638, -0.0123, -0.00996, 0.00513, -0.00416, 0.00802, 0.002, -0.0349, -0.0132, -0.00646,
0.00548, -0.000944, 0.00447, 0.00201, -0.003, 0.0217, 0.00439, -0.0286, -0.0086, -0.0116, 0.021, 0.01, 0.0249, -8.68*1e-
05, 0.0746, 0.026, -0.0058, -0.00796, -0.0124, 0.000401, -0.00069, 0.0143, -0.00145, 0.0535, -0.016
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