

I.U. de Física Aplicada a las Ciencias y las Tecnologías

CONSEQUENCES OF THE DART IMPACT ON DIMORPHOS' SPIN STATE AND SURFACE MASS

¹P. G. Benavidez^{1,2}, A. Campo Bagatin^{1,2}, P.-Y. Liu², D.C. Richardson³

¹DFISTS (Universidad de Alicante, Spain) (paula.benavidez@ua.es) ² IUFACyT (Universidad de Alicante, Spain) (acb@ua.es) ³Dept. of Astronomy (University of Maryland, MD, USA) (dcr@umd.edu)

→ The DART (NASA) spacecraft shall impact Dimorphos, the secondary of the binary NEA 65803 Didymos, in early fall 2022, at 6.2-6.7 km/s.

Motivation

- \clubsuit Investigate the possible reaction of Dimorphos to the DART collision.
- Evolution of Dimorphos internal structure/post-impact state depend on:
 a) propagation of system linear & angular momentum (conserved)
 b) propagation of residual kinetic energy from impact

→ Residual kinetic energy: \sim 0.25% according to cratering experiments goes into kinetic energy of the target.

Methodology

Tested target structures

- 'Real' DART: V_i = 6.65 km/s, m_i = 650 kg.
- Didymos reference model (M, D, ρ, T_{spin})
- $\varepsilon_N = 0.3$. $f_{KE} = 0.0025 (1/400)$.

<u>Scale</u> DART spacecraft mass *and* velocity to synthetic projectile conserving linear & angular momentum and preserving fraction (f_{KE}) of impact kinetic energy

 Impact target and follow dynamical evolution and energy propagation

Results (effects on the surface)

Universitat d'Alacant Universidad de Alicante

Results (spin period and axis orientation)

Spin period and axis orientation changes depending on impact geometry:

- Spin period: up to -30' change.
- Spin axis: up to 3 deg change.
- Spin axis is tilted with respect to angular momentum vector by about 0.1 deg with motion around the latter following a spin motion.

