
Designing a Simulation Environment fit for the next ten years

Alberto Ingenito(1), Peter Fritzen(1), Paul Steele(2), James Eggleston(2)

(1) Telespazio VEGA Deutschland GmbH

Europaplatz 5

D-64293 Darmstadt

Email: Alberto.Ingenito@telespazio-vega.de, Peter.Fritzen@telespazio-vega.de

(2) European Space Operations Centre

Robert-Bosch Strasse 5

D-64293 Darmstadt

Email: Paul.Steele@esa.int, James.Eggleston@esa.int

A CHANCE TO RETHINK SIMSAT

For over 20 years, SIMSAT has been the simulation engine used at ESOC for its operational simulators. SIMSAT, in its

current form, has been designed more than ten years ago. While many of the core concepts are still valid, technologies

and standards have changed significantly since then.

Obsolescence of technologies

Many of the key underlying technologies within SIMSAT are becoming obsolete. The most significant example in this

respect is CORBA. CORBA has stagnated for several years, and has reached the point where Oracle has first deprecated

and then removed it from the Java SE Platform [1]. In the current design of SIMSAT, removing CORBA would be a

complex operation that would affect almost all classes and source files. CORBA is not only used for inter-process

communication, but also as the basis of the SIMSAT component model and as the interface between all parts of the

simulation engine.

Abstraction from standards

SIMSAT, by design, is independent from a specific simulation standard. It uses internally its own CORBA based

interfaces, and supports the Simulation Models Portability 1 (SMI) and 2 (SMP2) through adapters. In February 2019,

an experimental ECSS-SMP adapter was also released.

This powerful feature of SIMSAT is also a weakness when it comes to performances of the system, both in time and in

memory.

The time overhead of SIMSAT comes from the multiple layers that have to be traversed to reach the necessary

information. In the SIMPERF study [2], we measured the overhead involved in retrieving published field values and in

executing scheduled operations; both areas were significantly affected by abstraction and CORBA usage.

The memory overhead of SIMSAT comes from memory duplication. Most of the information in the system is

duplicated, one instantiation within the particular standards adapter, and one instantiation within the internal

representation.

A new SIMSAT

To prepare for the next ten years, SIMSAT will evolve into a new product: SIMSAT Next Generation (SIMSAT-NG).

SIMSAT-NG has to rely on technologies that are still strong today. This implies that CORBA cannot remain a central

technology in the new SIMSAT design.

The upcoming ECSS-SMP standard will become applicable to every future simulator; it was therefore decided for

SIMSAT-NG to focus on the new standard. SIMSAT-NG will support natively ECSS-SMP, without the need of

adapters. Support for SMP2 will be dropped; support for other standards will be provided through adapters if necessary,

for example the Functional Mock-up Interface (FMI) used in the Automotive Industry. An FMI adapter for SIMSAT

was prototyped by us in the SIMULUS Next Generation study [3].

No support for SMP2 is possible, not even through adapters. The ECSS-SMP working group made a conscious decision

to reuse in ECSS-SMP the fully qualified names used in SMP2. This prevents the two standards from working together.

The implementation of SIMSAT-NG has been based on the public review draft of ECSS-SMP and, while not fully

featured yet, can already be used to run ECSS-SMP simulations, providing support to assembly, scripted operations,

and remote graphical interface.

DESIGN PRINCIPLES

The design principles of SIMSAT-NG have been derived from the findings of the SIMULUS Next Generation study

[3]. The following are the key principles that have been applied since the start:

Lightweightness, the system has to be light enough to be an effective infrastructure, both in terms of production and

testing. This is not only related to runtime performance, but also to execution setup and preparation.

Composability, the system must be easily composed and it must be possible to swap in and out all parts without

affecting the neighbouring components.

Extensibility, the system must allow to add new features to the system without modifying the existing components.

Embeddability, the system must support to include SIMSAT-NG as a library in other software. This includes graphical

user interfaces and design tools that want to support an internal runtime environment.

ECSS-SMP, the system must natively support ECSS-SMP, leaving the possibility of adapters to support other standards.

System architecture

As shown in Fig. 1 SIMSAT-NG design composes a simulation in three main layers.

K
er

n
el

Simulator

Se
rv

ic
es

Simulator
Models

Publication

Logger Scheduler
Event

Manager

…

SMP

Storer …

SIMSAT

M
o

d
el

s

Simulator
Models

Simulator
Models

Simulator
Models

Type Registry

Fig. 1. High level SIMSAT-NG architecture

At the bottom layer is the simulation kernel. The kernel is a monolithic block that cannot be separated. It provides a

minimal set of SMP features that co-operate too tightly to be independent.

The services layer provides the required ECSS SMP services, plus additional services that provide SIMSAT-NG

specific features. Each service is independent, and can be replaced with a different implementation or even removed

completely.

The simulation models are in the top layer. The models access the underlying layers through the SMP interface. When

models need to access SIMSAT-NG specific features, they can use a clearly separated set of interfaces, clearly defining

portable and non-portable implementation.

SMP as a component model

ECSS-SMP defines a component model, including a standardised interface to load components in a simulation both

statically and dynamically. This allowed us to drop the old CORBA model, and to rely solely on ECSS-SMP

mechanisms. SIMSAT-NG supports the loading of SMP packages, which can contain one, or more, of the following:

 A set of model factories, registered at package initialisation,

 A service, added to the simulator at package initialisation,

 Some C++ assembly code, instantiating and connecting simulation models at package initialisation.

This approach has a significant positive impact on the overall design of the new services, which are also ECSS-SMP

components and in many cases can be loaded in any ECSS-SMP compliant environment.

Minimal Kernel

The “Kernel” of the simulation is, out of necessity, a monolithic block. For this reason, it has been kept as small as

possible. It contains only the implementation of SMP ISimulator, ITypeRegistry, and the classes required to implement

IPublication. Everything else is provided as a service.

This allows, when needed, to provide different implementations of services that fit with different scenarios or

functionality. One example is the logger service, where in some cases a simple console logger is sufficient, and in some

other cases a full database is necessary. Another example is state storage; different scenarios may require different

storage formats.

This “composition” approach has the significant advantage of allowing simulation developers to tailor SIMSAT-NG to

their specific needs, selecting the best fitting services set, or possibly creating their own services as SMP components.

It is also possible to reuse the services on a different simulation environment, not necessarily based on SIMSAT-NG.

SIMSAT-NG as test environment

As already mentioned above, the SIMSAT-NG kernel has been designed to be used as C++ library. This, coupled with

the ability to select a subset of the available services, allows SIMSAT-NG to be used also as a unit and integration test

environment. The tests may not need all services, and for those a dummy service version can be used.

The tests do not require daemons to be running or external processes to be started, and this enables a simple and

effective integration with integrated development environments, e.g. allowing the tests to be executed with a debugger

attached.

FEATURES NOT COVERED BY THE SMP STANDARD

The ECSS-SMP standard does not try to cover all possible features of simulations. Such an attempt would not only add

complexity to the standard, but would also increase the cost of, and possibly limit, the adoption of the standard. Taking

this into account, the SIMSAT-NG design since its inception had to provide support for extensions, i.e. features not

defined in the ECSS-SMP standard but anyway provided by SIMSAT-NG.

In addition to this, at the time of writing this paper, the ECSS-SMP standard is still in a draft version. The SIMSAT-NG

design and implementation was taken as an opportunity to test, and in some cases propose, comments to the standard.

Extensions as Interfaces

From experience, it is clear that SIMSAT-NG has to provide more features than the set covered by the ECSS-SMP

standard. We decided to apply a fully interface based approach for the SIMSAT-NG kernel and services; enabling not

only to extend services, but also to replace them entirely.

Fig. 2 shows the type of interactions that are allowed in the SIMSAT-NG design.

Kernel Service 1 Service 2
Simulation

Models

Smp
namespace

esa.ecss.smp.extensions
namespace

Direct dependencies
are never allowed

Dependencies to SMP
interfaces are always allowed

Dependencies to extensions are
allowed when necessary

Fig. 2. Usage of SIMSAT-NG interfaces

Neither models nor services are allowed to directly interface with the implementation of the SIMSAT-NG kernel and

services. All dependencies have to go through the interfaces define in either SMP or the extensions.

The usage of SMP interfaces has no restrictions; it is always valid to use SMP interfaces.

The usage of the “extensions” namespaces has some, limited, restrictions.

The Kernel delegates to services, but not to specific implementations. The SIMSAT-NG Kernel can delegate some

functionalities to services. If the service is not available, the functionality is disabled. The Kernel cannot assume a

specific implementation of the service, as it is must always be possible to replace services.

Models and Services can, but should limit the usage of extensions for Kernel elements. The absence of extensions in the

Kernel elements should not fully compromise the functionality of components. In a pure ECSS-SMP environment,

components should still load and operate, possibly disabling functionalities that require SIMSAT-NG specific

interfaces. I.e. the ECSS-SMP standard offers the ability to retrieve published fields, the SIMSAT-NG ISimulator offers

in addition the ability obtain published properties and operations. A service collecting data on components can always

support fields, and properties only if the extended interface is available.

Models and Services can, but should limit the usage of extensions for Service elements. The same point as above, with

an important distinction. SIMSAT-NG services are as much as possible portable. This implies that, in several cases, the

dependency on extended services does not prejudice the portability of models.

Kernel and Services cannot assume that models implement the extensions. The extensions contain some interfaces that

allow model packages to enable extra features. These interfaces cannot be taken for granted, as models origin cannot

always be controlled. Kernel and Services can provide additional features and optimisations when the models offers the

extension interfaces, but have to support at least the SMP mandatory features for models that do not provide the

extensions.

Extension can be shared between different simulation environments. This has already been validated by extending the

old SIMSAT with some extensions interfaces to support the loading and execution of tests models. In the future, this

could be used by the working group to test and agree on new functionalities before the next revision of the ECSS-SMP

standard.

Storer as a Service

The SMP standard defines the “state vector storage” as part of the ISimulator interface. In SIMSAT-NG, the “state

vector storage” is provided by a service. This decision was driven by multiple factors:

 The monolithic kernel has to contain only the features that cannot be separated, and the storage is not part of

this set,

 The storage can be implemented in multiple ways with different benefits,

 The storage as service can be reused in any ECSS-SMP simulation environment, not only in SIMSAT-NG.

In the past SIMSAT offered a single “Storer” component, attempting to fulfil multiple roles and eventually providing

the storage feature with limited performances.

In Fig. 3 is shown how, in SIMSAT-NG, the Kernel has an association to the interface IStorer. The first registered

service to implement the IStorer interface is bound to the association, and is then used in all storage operations.

Each Storer service has only to implement a single storage mechanism (e.g. to database, to XML, to memory). It is also

possible to store a state vector in SIMSAT-NG, and restore it in a different simulation environment by loading the

SIMSAT-NG Storer as a normal SMP service.

Simulator

esa.simsat.services.Storer

esa.ecss.smp.extensions
namespace

IStorer

Fig. 3. Kernel interface to the Storer

Java Support

For a number of features in SIMSAT-NG, the integration of the Java Virtual Machine (JVM) provides significant

benefits, in particular the scripted control of the simulator, but also the implementation of some services and the

integration of existing Java libraries.

Through services, SIMSAT-NG integrates with the Java Virtual Machine. The “Jvm” service can provide other systems

with an in-process instance of the JVM. The access to the JVM is via the Java Native Interface (JNI).

SIMSAT-NG also provides a full mapping of the simulation tree. Starting from the Simulator instance, using a

reflection interface, Java models can navigate the tree, manipulate fields and properties, and invoke published

operations. The mapping is already implemented and tested.

At the time of writing this paper, the ability to publish Java classes as SMP2 components has also been prototyped. The

prototype offers the ability to create Java components that can be added to the simulation tree by means of a C++ proxy,

the proxy supports the publication of properties and operations. Planned features are: publication of fields, supporting

via code generation the implementation of C++ interface by Java models, and better declaration of Java components.

Remote connections

One of the historical requirements of SIMSAT is the ability to control the simulation remotely, either via GUI or from

external applications. In the past, CORBA provided the infrastructure for remoting.

For SIMSAT-NG, we wanted not only to limit the usage of aging technologies, but also to provide better encapsulation

and to support more use cases.

The remote control of SIMSAT-NG is now provided by a single service. This allows the easy replacement of the remote

control system, or even removing it completely, e.g. in unit test scenarios.

The remote connector is implemented in Java, and relies on the Java mapping to access the simulation. The

communication is based on message passing (Protocol Buffer), over a simple TCP connection. This simple, yet

powerful, communication approach is borrowed from modern network and web application. This approach will enable

us in the future to setup complex simulation scenarios, e.g. running simulations in a container cloud.

In Fig. 4 is shown how the chain of communication is all based on defined interfaces. The remote connector service is

the gateway for the MMI. The remote connection uses the IJvm interface to access the JVM and the Java mapping to

SMP. The Java mapping uses the IReflection interface to access operations and properties stored in the simulation

publication tree.

se
rvice

s

ke
rn
e
l

SIMSAT
MMI

Pu
b

licatio
n

esa.ecss.smp.extensions namespace

IReflectionIJvm

Jvm

R
em

o
teC

o
n

n
ecto

r
Messages
over TCP

Fig. 4. Kernel interface to the Storer

Scripting

Another historical requirement of SIMSAT is to control the simulation via scripting, both remotely (GUI) and directly

(system testing).

For SIMSAT-NG scripting has been implemented on top of the Java mapping, using the Java Scripting interfaces, and

adding late binding to access intuitively fields and operations.

The scripting service allows creating several independent script engines, loading any script engine available at that

moment to Java (e.g. JavaScript, Groovy, Ruby…). Late binding has been implemented for Groovy, and is planned for

JavaScript.

The implemented scripting layer is able to control all aspects of the simulation, from loading SMP packages, to the

termination of the simulation.

Unlike the previous SIMSAT implementation, the scripting engine is able to run synchronously with the simulation,

allowing for very accurate timing of executions in testing scenarios.

We have also prototyped a scripted SMP component. This feature, based on the Java SMP components, will allow the

creation of models with dynamic behaviors fully integrated with the classical C++ components.

A good example of use case for this dynamic behavior is the Generic Payload Model (GEPLOAD) provided by the

SIMULUS Generic Models (GENM). GEPLOAD already provides the ability to configure the model behavior trough

XML. Each configurable behavior was designed and implemented in C++. New behaviors require changing both the

C++ implementation and the XML schema of the GEPLOAD configuration.

The ability to add scripted behaviors to GEPLOAD would allow defining new behaviors and interactions without

having to extend GEPLOAD.

Assembly

In addition to the standardised C++ assembly mechanisms, we wanted to support a more dynamic assembly mechanism.

The features we wanted are:

 Ability to change to simulation without recompilation of binary artefacts,

 Ability to load and configure services,

 Ability to compose, connect and configure models,

 Ability to define sub-assemblies that can be reused as is, without requiring modifications.

Scripting proved immediately able to provide all the desired features.

To load services, it is enough to load the relative package. The configuration of the service can be done through access

of published fields, properties and operations.

To compose models are required more functionalities. We defined a mechanism to navigate through model factories

based on the fully qualified C++ class name of the created model. The Java mapping of the simulator offers a method to

access model factories and namespaces in the global namespace. E.g. the factories for the C++ models

 ::Example1 and

 ::ExampleNs::Example2

are accessed respectively as

 simulator.factories.Example1 and

 simulator.factories.ExampleNs.Example2.

It is possible to store in the scripts factories for later usage (similar to the C++ using keyword).

We defined a mechanism to access containers and references from components. As these SMP objects are not part of

the resolvable tree, are not required to have unique names in the parent object. The approach used for late binding uses

the character underscore (_), prepended to the object name to request a container or reference. The Java mapping then

provides a system to add components to the retrieved collections.

This approach allows a very intuitive setup of the simulation trough scripting.

In the first phase, the simulation packages are loaded. This automatically instantiate services and load factories.

In the second phase, the models are composed and connected. Configuration can happen immediately after model

creation.

In the third phase, the simulator is transitioned to standby.

Standardising the scripted assembly could prove beneficial. The assembly language standardisation does not necessarily

need to mandate the language to use. It could, however, provide consistent names and semantic for the late binding and

scripted operations. This would ease migration of assemblies between different simulation platforms.

Future work

SIMSAT-NG is being actively developed at the time of writing, and it is already able to provide a unit and integration

framework for the ESOC Generic Models library.

The work will continue, fully replacing SIMSAT in the migration of existing simulator to ECSS-SMP. Further work

include the support of execution in distributed containers, performance analysis and optimisation, and add simulation

services to increase the support provided by SIMSAT-NG to simulations.

[1] Oracle Corporation, “JDK 11 Release Notes,” in press.
[2] J. Eggleston, “SIMPERF 2 Final Report”, unpublished.
[3] P. Steele, P. Fritzen, and J. Whitty, “SIMULUS Next Generation (SIM NG)”, unpublished.

	Designing a Simulation Environment fit for the next ten years
	A chance to rethink SIMSAT
	Obsolescence of technologies
	Abstraction from standards
	A new SIMSAT

	Design principles
	System architecture
	SMP as a component model
	Minimal Kernel
	SIMSAT-NG as test environment

	Features not covered by the SMP standard
	Extensions as Interfaces
	Storer as a Service
	Java Support
	Remote connections
	Scripting
	Assembly
	Future work

