NON-SPHERICAL DUST DYNAMICS OF THE EJECTA PLUME IN SUPPORT OF DART/LICIACUBE MISSION

Stavro L. Ivanovski(1),

A. Lucchetti(2), M. Pajola(2), A. Rossi(3), I. Bertini(4), G. Zanotti(5), D. Perna(6) , E. Dotto(6), V. Della Corte(7), M. Amoroso(8), S. Pirrotta(8), M. Lavagna(5), E.G. Fahnestock(9), M. Hirabayashi(10), S. D. Raducan(11), J.R. Brucato(12), A. Capannolo(5), G. Cremonese(2), I. Gai(13), S. leva(6),), G. Impresario(8), E. Mazzotta Epifani(6), A. Meneghin(12) , D. Modenini(13), E. Simioni(2), P. Palumbo(4,7), G. Poggiali(12,14), P. Tortora(13), M. Zannoni(13), A.Zinzi(15,8), E. Rognini(15) R. Luther(16), B. Cotugno(17), V. Di Tana(17), F. Miglioretti(17), and S. Simonetti(17)
(1)INAF Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11,34143 Trieste, Italy, (2)INAF-Osservatorio Astronomico di Padova, Padova, Italy (3) CNR Istituto di Fisica Applicata "Nello Carrara", Sesto Fiorentino (Firenze), Italy (4) Università degli Studi di Napoli "Parthenope", Napoli, Italy (5) Politecnico di MilanoDipartimento di Scienze e Tecnologie Aerospaziali, Italy (6) INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Roma), Italy (7) INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy (8) Agenzia Spaziale Italiana, via del Politecnico, 00133 Roma, Italy (9) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (10) Auburn University, Auburn, AL-USA (11) Space Research and Planetary Sciences, University of Bern, Switzerland (12) INAFOsservatorio Astrofisico di Arcetri, Firenze, Italy (13) Università degli Studi di Bologna, DIN, Bologna, Italy (14) Università di Firenze, Dipartimento di Fisica e Astronomia, Italy (15)Space Science Data Center-ASI, Roma, Italy (16) Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany (17)Argotec, Torino, Italy

Dust dynamics of the plume evolution (close and far-field) after the DART impact Ojectives:

To study the dust dynamics of/in the plume:

- to compute the dust velocity of the particles based on their physical properties: size, mass and shape.
- to compute the distance and time at which the dust particles reach the upper limit of $5 \mathrm{~m} / \mathrm{s}$ (a scientific constraint for LICIACube measurements) as a function of their physical properties.
- to determine the size of the acceleration region after the impact and the time needed to reach its boundary when particle rotates.
- to study the initial dynamical conditions that constrain the further dynamical evolution of the plume and

Plume evolution setup

 therefore the plume density structure.

Method: non spherical dust dynamical model that solves the Euler dynamical and kinetic equations (updated from Ivanovski+2017) and analytical model for single dust particle expansion without dust collisions

Model setup: three body problem - solar radiation pressure, initial velocity of the ejecta, gravity field

Geometry of the plume evolution and model setup of rotating particles

\checkmark Single particle motion ejected from the surface with different initail orienation 45-135 degrees
\checkmark The different particle cross section will change the optical thickness of the plume. It is not only the size distrubution but the particle shapes and their orientation.
\checkmark In case of relatively strong solar radiation pressure, if the particle has initial torque will rotate during the plume evolution and its speed will be different than the non-rotating one of the same mass, shape and size.

Courtesy A. Cheng
$x_{s}>y_{s}$ with $a<0$ and $b<0$; LOS through ejecta cone twice

Consider $x-y$ plane defined as plane containing axis of 45° ejecta cone and vector $\left(x_{s}, y_{s}\right)$ to LICIACube; origin is DART impact site. Line-of-sight LOS is also considered within x - y plane. Calculate optical depth of ejecta along LOS. Three geometries are illustrated, defining angle b between LOS and direction to DART impact. acceleration/deceleration?

Non-spherical dust dynamics using scaling laws input

Ejecta model non-spherical simulations

Table 1: Impact ejecta scaling parameters of Weakly Cemented Basalt material (see Housen \& Holsapple 2011 for the parameter definitions).

$a(\mathrm{~m})$	$R(\mathrm{~m})$	δ $(\mathrm{g} / \mathrm{cc})$	ρ $(\mathrm{g} / \mathrm{cc})$	μ	C_{1}	k	p	v	n_{1}	n_{2}
0.5	10	0.57	2.6	0.46	0.18	0.3	0.3	0.4	1.2	1

AIM: Didymos and ejecta Reference model V5
$0.02 \mathrm{~m} / \mathrm{s}<\mathrm{V}_{\text {ini }} \leqq 59.0 \mathrm{~m} / \mathrm{s}$ $0.6 \leqq x<10$

Parameters	Case A	Case B
Particle size [m]	1.0×10^{-4}	1.0×10^{-4}
Initial orientation[degrees]	45	45
Particle density [kg/m^3]	2600	2600
Initial angular velocity [\#rot/s]	0	50% E_kin
Initial velocity [m/s]	5.0	5.0
Aspect ratio	$0.2 ; 5.0$	$0.2 ; 5.0$

Increase the initial rotational energy up to 50\% of the kinetic energy leads to less than few precent difference in the velocity under considered initial conditions.

Input -> Scaling laws Housen and Holsapple 2011

Dust dynamics using scaling laws with different $T_{\text {dust }}$ //3

Parameters of the current case studies

Parameters	Case A	Case B
Particle size $[\mathrm{m}]$	1.0×10^{-4}	1.0×10^{-4}
Initial orientation [degrees]	45	45
Particle density [kg/m^3]	2600	2600
Initial angular velocity [\#rot/s]	0	10% E_kin
Initial velocity [m/s]	$2.5 ; 5.0$	$2.5 ; 5.0$
Aspect ratio	$0.2 ; 5.0$	$0.2 ; 5.0$
Distance $[\mathrm{km}]$	55.25	55.25
Dust temperature $[\mathrm{K}]$	$280 ; 360$	$280 ; 360$

The speed of ejecta v, non-dimensionalized by the incident velocity U, that are released at radial distance x from the central point of impact is
$\frac{v}{U}=C_{1}\left[\frac{x}{a}\left(\frac{\rho}{\delta}\right)^{\nu}\right]^{-\frac{1}{\mu}}\left(1-\frac{x}{n_{2} R}\right)^{p}$

$$
0.02 \mathrm{~m} / \mathrm{s}<\mathrm{V}_{\text {ini }} \leqq 59.0 \mathrm{~m} / \mathrm{s}
$$

$$
0.6 \leqq \chi<10
$$

AIM: Didymos and ejecta Reference model V5

Dust dynamics using scaling laws with different $T_{\text {dust }}$ 2/3

Cases A

Spheroid ($\mathbf{a} / \mathbf{b}=\mathbf{0 . 2}, 100 \mu \mathrm{~m}$) in the considered cases with initial velocity $5 \mathrm{~m} / \mathrm{s}$ or higher decelerate with less than few $\%$ at 55.25 km from Dimorphos. Therefore, the initial velocity is the key initial parameter. The increase of dust temperature of 100% does not decrease the rotational frequency.

Dust dynamics using scaling laws with different $\boldsymbol{T}_{\text {dust }}$ 3/3

Case B

Spheroid ($\mathbf{a} / \mathbf{b}=\mathbf{0 . 2}, 100 \mu \mathrm{~m}$) in the considered cases with initial velocity $5 \mathrm{~m} / \mathrm{s}$ or higher decelerate with less than few $\%$ at 55.25 km from Dimorphos. Therefore, the initial velocity is the key initial parameter. The increase of dust temperature with 100% decreases the initial rotational frequency of few precents.

Chained modelling of ejecta dynamics using impact iSALE

Ejecta model non-spherical simulations

g. 1: A snapshot of the formation of the crater resulting from the iSALE modelling performed with parameters reported in Table 1. The colorbar represent the peak pressure of the ejecta tracer particles.

Tracer velocity
Launch angle ($35^{\circ}-49^{\circ}$)
Launch position Mass

Description Strength model
Poisson ratio
Strength at zero pressure (intact; MPa) Strength at inf. pressure (intact; MPa) Friction coefficient (damaged) Initial porosity Initial distension

Symbol Target ROCK/LUND
$\nu \quad 0.25$
$\begin{array}{cl}Y_{0} & 0.1\end{array}$
$\begin{array}{ll}Y_{\infty} & 1000\end{array}$
$\mu_{d} \quad 0.60$
$\begin{array}{ll}\mu_{0} & 30 \% \\ \alpha_{0} & 1.30\end{array}$

Parameters	Case
Particle size of a.r. $0.2[\mathrm{~m}]$	4.75×10^{-2}
Initial orientation [degrees]	46
Launch position [m]	11
Particle mass [kg]	7.45×10^{-2}
Initial velocity [m/s]	0.94
Aspect ratio (a.r.)	0.2
Dust Temperature	280

(a. r. $\mathrm{a} / \mathrm{b}=0.2$). The complete set of parameters is given in the tables above. The gravity of the whole binary was considered (binary was approximated as a mass point).

Input -> iSALE simulations
Planetary Defense Conference 202 I

Chained modelling with SPH impact output

Input -> G. Zanotti's master thesis - SPH simulations

Study case A: Ejecta model non-spherical simulations
Density 2800 kg $/ \mathrm{m}^{-3}$
Assumed size $0.1 \mathrm{~m} \mathrm{->} 1.03 \times 10^{5} \mathrm{~kg}$
Consistent with Scaling Laws Estimation

Main research objectives and ongoing work

$>$ To investigate how much different particle shapes and sizes could change the optical depth (because of the dust scattering, geometry and dynamics)
> By varying the initial angular velocity of the ejected particles, provided with the obtained dependence on the assumed particles' temperature, we study what amount of dust particles' rotational energy after the thermal shock due to the impact is necessary to intrude the rapidly expanding plume.

Ongoing work

$>$ What minimum initial threshold speed for a given type of dust (in terms of size, density and launch angle) is sufficient to govern the plume evolution independently from the intensity of the thermal shock and rotation state of the ejected dust particles.
$>$ Validity of collision-free ejecta evolution assumption
$>$ Constrain the momentum transfer enhancement parameter (β)

