

Dynamics of ejecta plume after the DART impact on Dimorphos

Fabio Ferrari, Sabina D. Raducan, Martin Jutzi, John Wimarsson, Eugene G. Fahnestock, Stephen R. Schwartz

7th IAA Planetary Defense Conference, Vienna, Austria

26-30 April 2021

INTRODUCTION

Goal: study the short-medium term dynamical evolution of the ejecta fragments after the DART impact on Dimorphos **Methodology**: hybrid approach using both SPH and N-body DEM simulations

Smoothed-Particle Hydrodynamics (Bern's SPH)

To model the hypervelocity impact and ejecta formation

Interface between SPH and Nbody when ejected particles are affected by gravity only **N-body DEM (GRAINS)**

To model the ejecta evolution in the gravity regime

- Friction and cohesion
- Porosity / compaction model
- Self-gravity

(Jutzi et al 2008, Jutzi & Michel 2014, Jutzi 2015)

- Gravity of Didymos and DimorphosSelf-gravity between ejecta
- Contact/collisions between non-spherical fragments

(Ferrari et al 2017, Ferrari et al 2020, Ferrari & Tanga 2020)

Ejecta velocity distribution

velocity [cm/s]

We used Bern's SPH to model DART-like impacts on weak spherical targets

Projectile parameters			Target parameters		
Radius <i>, a</i>	Mass, m	Velocity, U	Cohesion, Y ₀	Friction, f	Density, $ ho$
0.5 m	500 kg	6 km/s	0 Pa / 10 Pa	0.6	1.62 g/cm ³

DART (*m*, δ, U) Scenario 1, $Y_0 = 10$ Pa **#** 400 -100-400 -300 -200 -100 x [m] 150 m Velocity [cm/s] velocity [cm/s] Dimorphos (Y_0, f, ϕ_0) Scenario 2, $Y_0 = 0$ Pa [m] z -100 -400 -300 -200 -100 x [m] Velocity [cm/s]

Raducan & Jutzi 2021, LPSC

Ejecta at SPH/N-body interface

Post-impact target morphology

EVOLUTION OF EJECTA 10 Pa vs 0 Pa cases

CONCLUSION

Ejecta evolution 4h after impact. Projection of the ejecta curtain on the x-z plane (Dimorphos orbital plane). The frame is centered at the barycenter of Didymos system. Asteroids are not shown: they are located approximately near the origin (Didymos) and at point [x=600m, z=1000] (Dimorphos).

- We set up the numerical problem to study short-medium term evolution of ejecta fragments, using a **hybrid SPH/N-body approach**
- We simulated a DART-like hypervelocity impact on a weak spherical target using **Bern's SPH** code
- We transition to a N-body DEM code (GRAINS) to simulate the evolution of ejecta in Didymos gravitational environment, considering self-gravity and contact/collisions between non-spherical ejecta fragments.
- Both cohesive (10 Pa) and cohesionless (0 Pa) target surface is considered
- Preliminary test cases (evolution up to several hours after impact) have shown **different behavior of fragments ejected** between cohesive and cohesionless cases