

Rapid Response Flyby Exploration using Deep Space Constellation deployed on ^{2-x} Asteroid Flyby Cyclers

Naoya Ozaki,

-20

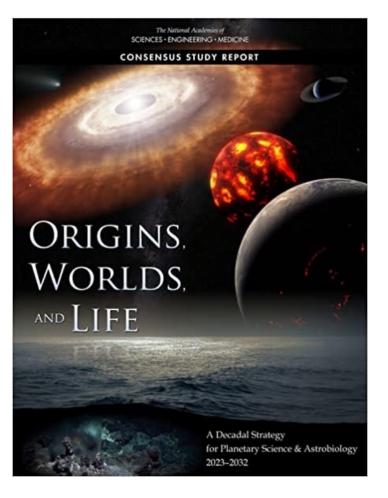
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

Ryuki Hyodo, Yuki Takao, Darryl Z. Seligman, Michael E. Brown, Sonia Hernandez, Makoto Yoshikawa, Masaki Fujimoto

 $y \,(\mathrm{km})$

-0.5

As of November 2022, 2304 potentially hazardous asteroids (PHAs) have been discovered that could impact the Earth.


2

A Decadal Strategy for Planetary Science and Astrobiology 2023-2032

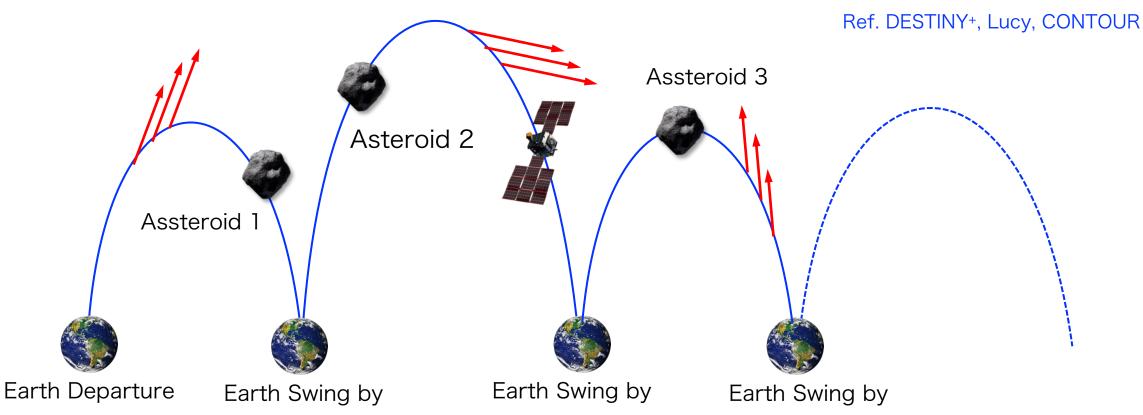
The U.S. Decadal Survey recommended completing the DART mission in 2023, launching the NEO Surveyor in 2026, and conducting a rapid response flyby mission by the end of 2032.

Finding: Prior characterization of a hazardous NEO via an in situ reconnaissance mission is advisable to determine its physical characteristics and to develop an appropriate mitigation response based on the available warning time. Although rendezvous missions are preferred, fast flyby missions may be required to obtain timely characterization data for short warning time scenarios.

Recommendation: The highest priority planetary defense demonstration mission to follow DART and NEO Surveyor should be a rapid-response, flyby reconnaissance mission targeted to a challenging NEO, representative of the population (~50-to-100 m in diameter) of objects posing the highest probability of a destructive Earth impact. Such a mission should assess the capabilities and limitations of flyby characterization methods to better prepare for a short-warning-time NEO threat.

Next Steps for Planetary Defense Missions (p.18-21)

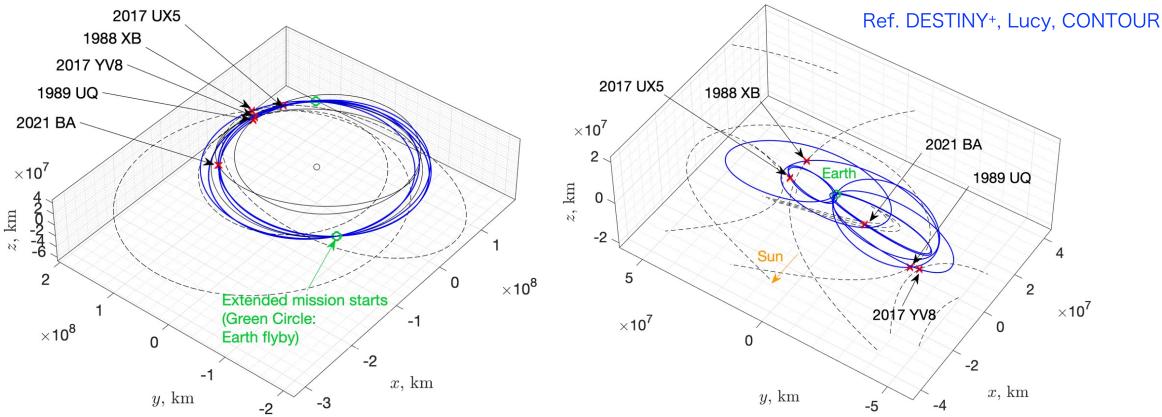
Rapid Response Exploration Scenarios


Option	Direct Launch	Loitering at Lagrange Points	Loitering in Earth-resonant flyby orbit (Asteroid flyby cycler)
Overview	Launch a spacecraft just after the target object is found.	Keep the spacecraft in halo orbit, and escape and aim for the target object just after discovery.	Keep the spacecraft in an Earth- resonant flyby orbit and target the object with the Earth gravity assist just after discovery.
		Loitering X Logronge Point	Borth Orbit Earth Orbit Lottering

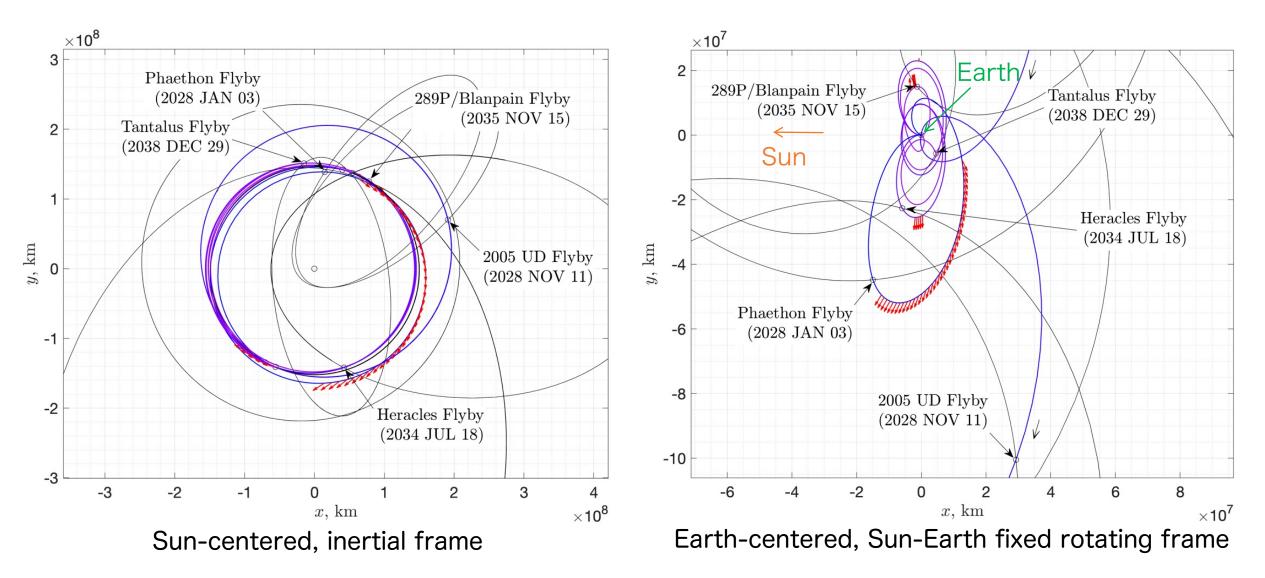
Rapid Response Exploration Scenarios

Direct Launch	Loitering at Lagrange Points	Loitering in Earth-resonant flyby orbit (Asteroid flyby cycler)
Launch a spacecraft just after the target object is found.	Keep the spacecraft in halo orbit, and escape and aim for the target object just after discovery.	Keep the spacecraft in an Earth- resonant flyby orbit and target the object with the Earth gravity assist just after discovery.
The rocket must be ready for launch at any time, which is difficult to do when targeting hazardous asteroids, which occur only once every 10 years or so.	Since the escape energy from a halo orbit is low, a large acceleration is required from there by electric propulsion, etc.	It is necessary to be able to operate more than 10 probes simultaneously, and the challenge is to make them autonomous for this purpose.
Micro to small spacecraft (~50 kg) with large launch vehicle	Medium-size spacecraft (~500kg)	About 10 micro spacecraft (~50kg)
A launch vehicle capable of immediate launch is essential.	ESA's Comet Interceptor	A cost-effective way to perform multiple asteroid flybys while waiting.
	Launch a spacecraft just after the target object is found. The rocket must be ready for launch at any time, which is difficult to do when targeting hazardous asteroids, which occur only once every 10 years or so. Micro to small spacecraft (~50 kg) with large launch vehicle A launch vehicle capable of	Launch a spacecraft just after the target object is found.Keep the spacecraft in halo orbit, and escape and aim for the target object just after discovery.The rocket must be ready for launch at any time, which is difficult to do when targeting hazardous asteroids, which occur only once every 10 years or so.Since the escape energy from a halo orbit is low, a large acceleration is required from there by electric propulsion, etc.Micro to small spacecraft (~50 kg) with large launch vehicleMedium-size spacecraft (~500kg)A launch vehicle capable ofESA's Comet Interceptor

Asteroid Flyby Cycler Orbits


Naoya Ozaki, Kanta Yanagida, et al., "Asteroid Flyby Cycler Trajectory Design Using Deep Neural Networks," *Journal of Guidance, Control, and Dynamics*, 2022.

By adopting an asteroid flyby cycler orbit (alternating asteroid flyby and Earth swing by) as shown above, it is possible to fly by one NEO (requiring ΔV consumption of about 10 m/s per year) per year.


Asteroid Flyby Cycler Orbits

Naoya Ozaki, Kanta Yanagida, et al., "Asteroid Flyby Cycler Trajectory Design Using Deep Neural Networks," *Journal of Guidance, Control, and Dynamics*, 2022.

By adopting an asteroid flyby cycler orbit (alternating asteroid flyby and Earth swing by) as shown above, it is possible to fly by one NEO (requiring ΔV consumption of about 10 m/s per year) per year.

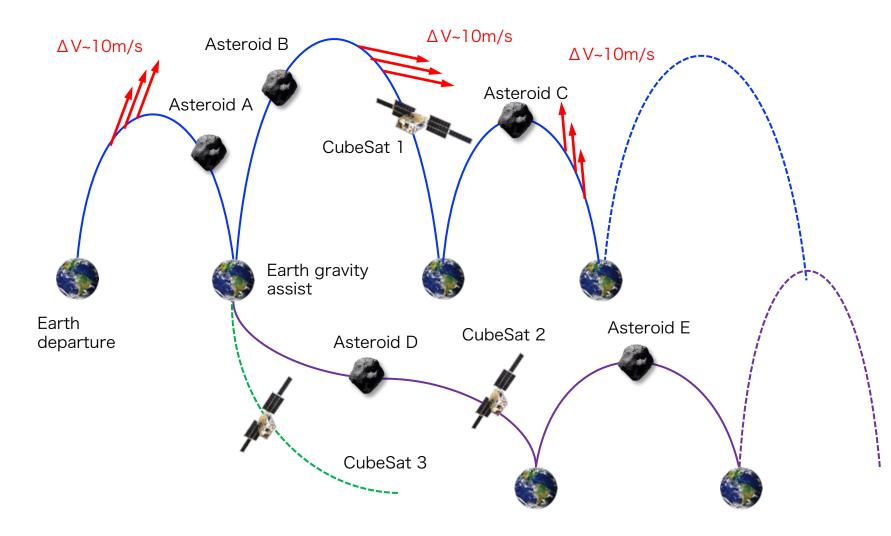
Example Trajectory of DESTINY+ Extended Mission

New Small Body Exploration Strategy of ISAS

As of November 02, 2022, more than 1.23 million small bodies have been discovered. The combination of a time-consuming (rendezvous-type) sample return mission, which allows for **detailed exploration**, and a multi-flyby mission, which allows for **onechance but easy access to multiple bodies**, makes small body exploration even more effective!

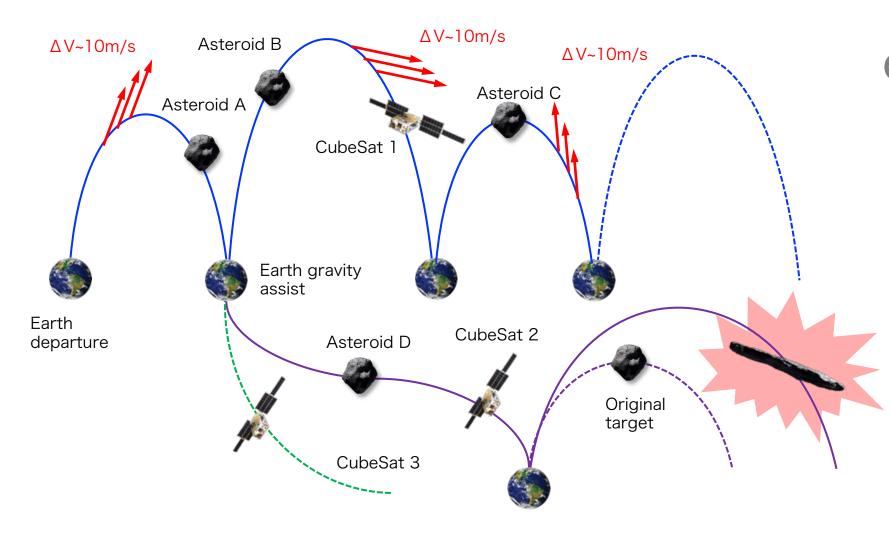
Increasing "Value" by Precursor

Extensive exploration DESTINY+


(Multiple flyby)

Hayabusa 2 (Sample Return)

Detailed exploration


Generalizing discoveries to specific bodies

Multiple Asteroid Flyby Exploration by Deep Space Constellation

One asteroid flyby per month for a 12-spacecraft configuration

Multiple Asteroid Flyby Exploration by Deep Space Constellation

One asteroid flyby per month for a 12-spacecraft configuration

Orbit correction by the Earth gravity assist can also realize rapid response exploration

Significance of the Deep Space Constellation Concept

Planetary Defense

International cooperation through SmallSat-based deep space exploration missions to protect the Earth together in the world. Space Exploration Technologies

Improvement of technological capabilities and development of industry and human resources through continuous technology demonstration. Planetary Science

1) Statistical information on small bodies by super multiple asteroid flybys

2) the world's first direct exploration of interstellar objects and/or longperiod comets.

Conclusiton

✓In order to realize multiple asteroid flyby and rapid response flyby of small bodies, we proposed the concept of deep space constellations using asteroid flyby cycler orbits.

✓The significance of this concept is presented from the three viewpoints of "planetary defense," "planetary science," and "space exploration technology.

Why don't we work together to realize the "world's first interstellar object exploration" and "protecting the earth from asteroid impact" mission?