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Introduction
Missions to asteroids have been the trend in space exploration for the 
last years. They provide information about the formation and evolution 
of the Solar System, contribute to direct planetary defense tasks, and 
could be potentially exploited for resource mining. Be their purpose as 
it may, the factor that all these mission types have in common is the 
challenging dynamical environment they have to deal with. The 
gravitational environment of a certain asteroid is most of the times not 
accurately known until very late mission phases when the spacecraft 
has already orbited the body for some time.

Polyhedron shape models help to estimate the gravitational potential 
with a density distribution assumption (usually constant value) and 
some optical measurements of the body. These measurements, unlike 
the ones needed for harmonic coefficient estimation, can be taken from 
well before arriving at the asteroid’s sphere of influence, which allows 
to obtain a better approximation of the gravitational dynamics much 
sooner. The disadvantage they pose is that obtaining acceleration 
values from these models implies a heavy computational burden on the 
on-board processing unit, which is very often too time-consuming for 
the mission profile.

The purpose of this research is to develop a tool to obtain spherical 
harmonic coefficients for different polyhedron shape models. Such 
coefficients are then used to assess the accuracy of this spherical 
harmonics model w.r.t. the polyhedron one.

From Polyhedra to Spherical Harmonics 

Implementation

In terms of implementation, the main issues identified by [1] are to 
represent homogeneous polynomials in three variables and to operate 
with them without using symbolic manipulators. This is achieved by 
representing trinomials of degree n as arrays of length (n+1)(n+2)/2 
whose elements are the coefficients of the trinomials ordered in such a 
way that each coefficients correspond to the right trinomial.

AstroHarm (AstroSim Harmonics) is a Python suite and module that 
takes the theory developed on [1] to a software materialisation. The 
capabilities that this module offers include: wavefront (.obj) files 
management, geometric assessment of shape models (reference 
radius, volume, centre of mass…), triplet management and operations, 
C and S matrixes recursive computation, normalisation routines for 
coefficients, and file I/O.

Validation

In order to validate the coefficients obtained by AstroHarm, 
semi-analytical methods were used to obtain spherical harmonic 
coefficients from accurately known geometric bodies as a cube, a 
tetrahedron, and a double pyramid.

Using Wolfram Mathematica® software and symbolic formulation, the 
semi-analytically-computed coefficients were compared to the ones 
obtained from AstroHarm, and the results were satisfactory.

Performance vs Accuracy

Once these coefficients are obtained, a spherical harmonic model has 
to be implemented. Following the method developed by [2], the 
gravitational acceleration given by these coefficients can be computed 
and used as internal dynamics for a given propagator.

To evaluate the accuracy of this spherical harmonics model, a ground 
truth trajectory is required. This ground truth is obtained from a 
polyhedron dynamics suite, developed by [3] and based on [4]. This 
choice is supported by the fact that this method is exact up to the 
surface of the given shape model, assuming constant density 
distribution.

The two main drivers of this research are computational performance 
and results accuracy. Once the computation of the coefficients is 
validated, the next step is to take the experimentation to a real asteroid 
for which a shape model is given.

Starting with Bennu, shown in the image above, the algorithm is run for 
different maximum orders for the coefficients going from 2 to 10, 
obtaining the following results in terms of trajectory difference w.r.t. the 
polyhedral model, which is taken as ground truth.

It can be clearly seen that, as the order of the coefficients increases, 
the error is reduced, arriving at values close to no error for n>7 in this 
case. In terms of computational effort, Figure 4 shows that the 
computational time is considerably reduced.

Limitations: shape and distance

The limitations of this algorithm were also explored within this project. 
In particular, two specific parameters were investigated: body shape 
and orbital distance.

The former tried to gain some insight into how the oblateness of a body 
could make it more difficult to obtain a set of spherical harmonics 
coefficients that could get as accurate as the polyhedron model.

Using Lutetia, a less spherical body than Bennu, as subject, the 
following results were obtained:

Even though there is a clear convergence on the trajectories as the 
order of the spherical harmonics model goes up, this convergence is 
far from the polyhedral model, which shows that shape is a clear 
limitation for the algorithm.

When analysing the effect of the orbital distance (semi-major axis), the 
following was observed:

When distance from the body grows larger, the significance of its 
irregular shape decays until it becomes no longer noticeable. This 
analysis serves to indicate up to which point these models can be used 
depending on the gravitational environment.

Conclusion
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A tool has been developed to obtain spherical harmonics coefficients 
from polyhedron shape models. The coefficients computed have been 
validated using semi-analytical methods.

The further usage of these coefficients in an orbital propagator is 
assessed by comparing the integrated trajectories with the ones 
obtained using polyhedron dynamics.

The results show that, in terms of computational effort, the spherical 
harmonics implementation is far superior to the polyhedron dynamics 
implementation.

Accuracy-wise, for more spherical bodies, the trajectories converge to 
the ground-truth. However, this method finds it difficult to replicate the 
actual gravitational accelerations when orbiting too close to a highly 
non-spherical body.
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The main reference for this work is [1], where the authors developed 
an algorithm to compute the spherical harmonics coefficients of a given 
constant density polyhedron. We remark that such a hypothesis is not 
unrealistic for a wide set of asteroids. 

The key idea is to use recurrence relations for the integrands that 
appear when one computes the spherical harmonics coefficients for a 
given body. Such integrands usually involve Legendre functions and 
polynomials. The recurrence relations are presented in both their 
normalized and non-normalized form. 

Finally the polyhedron is partitioned into a collection of simplices and 
the integration of the integrands is performed. These simplices are 
tetrahedra whose bases are the triangular faces of the polyhedron and 
the vertices are at the centre of the reference system used to define 
the coordinates of the points that form the shape model. A change of 
variable is used  to ease the integration of the aforementioned 
simplices.
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Figure 1: Validation heatmaps for C and S matrixes. Red crosses point out cases were m>n, which should 
be disregarded due to its lack of conceptual meaning. Green dots represent values that analytically equal to 

zero. Colorbars talk about the magnitude of the errors, which goes from 1e-17 to 1e-19.

Figure 3: Radial, tangential, and normal component errors for different spherical harmonics models w.r.t. 
polyhedral model for Bennu. sma=500 m (1.73 Bennu radii), ecc=0.1, inc=45º.

Figure 4: Computational effort for the different values of n after the 30h propagation corresponding to the 
trajectories shown in Figure 3.

Figure 5: Shape model of asteroid Lutetia used for simulation. Orange trajectory: point-mass model; Blue 
trajectory: polyhedron model; Green trajectories: Spherical harmonics with different n.

Figure 6: Radial, tangential, and normal component errors for different spherical harmonics models w.r.t. 
polyhedral model for Lutetia. sma=150 km (2.32 Lutetia radii), ecc=0.1,  inc=45º

Figure 7: Radial, tangential, and normal component errors for different semi-major axis w.r.t. polyhedral model for 
Lutetia.
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Figure 2: Shape model of asteroid Bennu used for simulation. Orange trajectory: point-mass model; Blue 
trajectory: polyhedron model; Green trajectories: Spherical harmonics with different n.


