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ABSTRACT

With their theoretical basis now well understood, parameter-varying and adaptable control and
estimation methods have been successfully applied to aircraft and launcher control problems. For
spacecraft, the effect of time-varying parameters is less overt; nevertheless, explicitly consid-
ering parameter variations in the controller/estimator design process can be beneficial in some
cases. This paper provides an overview of several parameter-varying satellite and spacecraft at-
titude control and estimation problems. The respective dynamics are briefly described and then
reformulated in line with a (linear) parameter-varying framework.

1 INTRODUCTION

In the last decades, linear parameter-varying (LPV) and adaptable control methods have found their
way into the aerospace domain. Their theoretical basis is now well understood and practical design
tools are now readily available.
Examples of successful application of LPV methods include aircraft wing flutter control [30] and
missile autopilots [7]; furthermore, LPV control designs exist for re-entry vehicles [18] and launch-
ers [34]. Especially the latter can be considered a more than suitable application due to the small time
constants and wide range of dynamical properties.
For satellites and spacecraft, on the other hand, the challenges posed by parameter variations are less
overt. A major reason lies in the comparatively long time constants of the spacecraft dynamics and
the environmental conditions.
Nevertheless, accounting for parameter variations in the controller design process can have bene-
fits, some of which lie beyond typical closed-loop performance metrics. Motivated by the on-going
ESA-funded study Adaptable Attitude Control and Estimation with Guaranteed Robust Performance
(ACE), this paper discusses several challenges and opportunities of current practical interest that are
connected with time-varying parameters.
The remainder of this paper is structured as follows: section 2 provides a brief recapitulation of LPV
and adaptable control methods with particular focus on the aerospace domain. Sections 3 through 6
discuss some exemplary parameter-varying control and estimation problems relevant for spacecraft
guidance, navigation and control (GNC). Finally, some conclusions are drawn in section 7.
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Figure 1: Concept of a Gridded LPV Model

2 PARAMETER-VARYING CONTROL AND ESTIMATION FOR AEROSPACE GNC SYS-
TEMS

2.1 Theoretical Background

LPV systems are a versatile mathematical modeling framework that is capable of representing the dy-
namic behavior of various complex engineering systems such as aircraft, wind turbines, and mecha-
tronic systems, see e.g. [11] or [9] for an overview. LPV systems are dynamic systems whose state
space representation involves continuous matrix functions of a time-varying parameter vector ρ that
is not known in advance but measurable at each time instant:

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)
(1)

with an unknown but measurable continuous function ρ : R+ 7→ P ⊂ Rnρ , where P is a compact set
of admissible parameter values, and known continuous functions A(ρ),B(ρ),C(ρ), and D(ρ). For
a fixed parameter value, the LPV system becomes an LTI system.
As first proposed by [1], both exogenous and endogenous parameter variations can be modeled in
the framework of LPV systems. Exogenous parameters variations do not dependent on the system
state and ρ(t) is often called “scheduling signal”, which is a priori unknown but measurable online.
Endogenous parameter variations dependent also on the state of the system, i.e. ρ(t,x(t)) is a function
of the system state. The latter are captured by the quasi-LPV (qLPV) paradigm. The name originates
from the fact that qLPV systems describe are nonlinear systems, expressed in a quasi linear form.
The attractiveness of the LPV framework is based on the availability of a large body of theoretical
results for analysis and synthesis [3], [2], [6], [5], [4], [12], [13], [15], [16], [17] as well as mature
computational tools [26]. As a consequence, LPV control can be used to apply powerful control
design techniques from robust control theory to a wide class of nonlinear systems and to systems that
are naturally modelled with parameter-dependent time-varying dynamics.
Two main types of LPV systems can be distinguished. The first are so called gridded LPV systems,
which use a set of local models to represent the LPV system. A graphical representation is given in
Fig. 1. The other are LPV-linear fractional transformation (LFT) models [20], [21]. If the parameter
dependence of the model is rational in ρ, a linear fractional representation can be used. It represents
the LPV system as the interconnection of a linear time-invariant (LTI) model and a time-varying
parameter block as depicted in Fig. 2. Specifically, the model from Eq. 1 can be expressed as

FU(M ,∆(ρ)) = M 22 +M 21∆(ρ) (I −M 11∆(ρ))−1 M 12
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Figure 2: LPV System as LFT Model

where M =

[
M 11 M 12

M 21 M 22

]
is parameter-independent and ∆(ρ) contains the parameter dependence,

similar to the representation of uncertainties in robust control.
Performance of LPV systems is usually specified in terms of the induced L2-norm from a performance
input w to a performance output z. For the controller synthesis an optimization problem has to be
solved over the set of all possible parameter trajectories P:

min
Kρ,ρ∈P

∥P ρ ∗Kρ∥

s. t. Kρ stabilizes P ρ

where the notation ∗ denotes the closed-loop interconnection and P ρ denotes the LPV plant from
Eq. 1.
Depending on how exactly the model depends on the scheduling parameter, several approaches exist
that formulate the controller synthesis as a semidefinite program (SDP) based on two linear matrix
inequalities (LMIs). A widely used approach is to solve the SDP over a gridded parameter space [6].

2.2 Application to Aerospace Systems

Numerous applications of LPV control to aerospace engineering problems can be found in literature.
An elaborate example is the control of a turbofan engine in [14], where the power code of the engine
is used as the scheduling parameter. Another prototypical application for LPV control is the rigid
body motion of aircraft. The most common scheduling parameters are altitude and Mach number or
the dynamic pressure. Examples for flight tested LPV controllers are [10] on board of the VAAC
Harrier or [31] on board of a Cessna Citation. More recently, LPV control has been applied for flutter
suppression of highly flexible wings [30]. LPV control has also been applied for missile autopilots
[7]. In the scope of space applications, LPV control designs exist for ESA’s Vega launcher [34] and
re-entry vehicles [18]. However, these have not been flown yet.
Satellites and spacecraft have much slower dynamics than aircraft and launchers. For instance, the
rotation of the solar arrays of an Earth observation satellite changes its mass properties at a rate of
one revolution per orbit, which for low Earth orbits amounts to less than 0.1 deg/s. Furthermore, the
rotation of such an appendage typically leads only to a small change of the spacecraft’s moment of
inertia (MoI). It is therefore not surprising that classical robust LTI control design methods are usually
sufficient to fulfil stability and performance requirements of current satellite missions.
Nevertheless, accounting for parameter variations in the controller design process can have benefits,
some of which lie beyond typical closed-loop performance metrics.
The current trend of commercialisation has introduced product lines into satellite development and
production. Among a product line, individual satellites are mostly similar (or even identical), but may
still differ from each other in terms of e.g. payload. As a result, many GNC relevant properties are
constant along the product line, while some parameters such as the moment of inertia vary within
certain bounds. A natural goal is therefore to aim for a single adaptable controller for the entire
product line with suitable scheduling parameters to adapt the controller for each individual satellite.
The main benefit is the increased efficiency of the controller design process itself, which becomes
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Table 1: Comparison of Most Prominent LPV Toolboxes

Toolbox Functionality Limitations

LPVTools model reduction, analysis,
synthesis and simulation, LFT
and gridded

No auto-balancing for control
design, slow solvers for (stan-
dard) SDPs,
Limited to up to 50 states,
no imposable structure for the
controller

LPVcore modeling, identification and
control of linear parameter-
varying (LPV) systems, global
setting

Early release, missing stan-
dard functionalities, standard
SDP approach, no imposable
structure for the controller

Robust Control Toolbox Modelling, analysis and syn-
thesis of uncertain systems,
System order reduction,
Structured robust control
synthesis

No explicit LPV functionality

significant already in the extreme case of a “product line” of two satellites such as the MetOp-SG
spacecraft.
This “product line approach” can even be transferred to the design process of a single spacecraft
where relevant properties (especially mass and moment of inertia) are typically known only with
large uncertainties in early design phases, but become more and more certain as the design matures.
Compared with designing the controllers robust against the initial large uncertainty, the achievable
performance could be increased by requiring robustness only against the final small uncertainties and
treating the nominal parameter values in a parameter-varying framework.
On mission level, the ability to explicitly account for parameter variations enables additional opera-
tional modes. For example, some science spacecraft such as the envisaged Advanced Telescope for
High-ENergy Astrophysics (ATHENA) mission contain several instruments that share the same op-
tics, requiring large movable parts to align the correct detector to the line of sight [23]. Reorienting
both the spacecraft and the movable parts simultaneously can save a significant amount of maneuver-
ing time, thus increasing the scientific output.
Laser communication terminals require high pointing stability, but are subjected to structural vibra-
tions with varying frequencies (e.g. reaction wheel induced microvibrations that depend on the wheel
speeds). For this application, an adaptable disturbance estimation and cancellation scheme can al-
low using less performant (and thus, less expensive) hardware while still fulfilling all performance
requirements.

2.3 Available Toolboxes

In addition to MATLAB’s Robust Control Toolbox (RCT), mature tools for LPV analysis and syn-
thesis exist. The two most prominent toolboxes, LPVtools [26] and LPVcore [32], will be discussed
in the following. The discussion is summarized in Table 1. Both toolboxes are freely available and
specifically developed for MATLAB, one of the most widespread programming and numeric comput-
ing platforms in engineering.
The functionality of both toolboxes is practically similar. They cover LPV modelling, model reduc-
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tion, synthesis, and analysis. However, LPVTools focuses heavily on the gridded LPV approach.
LPVcore distinguishes itself by also providing a so called global setting, i.e. time-varying scheduling
trajectories. LPVTools is the more matured toolbox given LPVcore’s initial release in 2021. The
latter has still a limited functionality, which gets continuously extended.
Although quite evolved, LPV controller synthesis using the discussed tools summarized in Table 1
(but also in general) has three major issues:

1. The respective SDP scales badly with the number of state variables and scheduling parameters.

2. The resulting controller is a full-order dynamic controller without any exploitable structure.

3. The controller depends explicitly on the derivative of the scheduling parameters.

In summary, these result in the discussed scarce industrial application. With respect to the first issue,
a general rule of thumb is to limit the number of scheduling parameters to three for gridded LPV
systems. LFT LPV systems scale better with the number of parameters, if the dependency on them is
simple, i.e. functions of low order.
Another notable tool, which however is not as easily accessible, is LPVMAD, which was developed
in an ESA project with the same name [28]. An example for a toolbox specialised purely on identifi-
cation is the LPV Input/Output Systems Identification Toolbox (LPVIOID) [27].
Another important toolbox is Matlab’s build-in robust control toolbox [28]. Although not an explicit
LPV toolbox, it provides a number of useful functionalities. These functionalities include, linear
matrix inequality (LMI) tools, LFT modelling, structured singular value analysis (µ), worst-case gain
analysis. Especially the LMI tools are an integral part in LPV analysis and synthesis as both problems
are posed as LMIs. Moreover, the toolbox includes the powerful systune function [22] and the well-
known structured H∞ design [4]. Although it allows for automated gain scheduling, it is not an
explicit LPV method. The Robust Control Toolbox is a well-established framework, which found its
way into many applications of industrial complexity. This is particularly true for the H∞ synthesis
features.

3 MULTI-BODY SPACECRAFT WITH PRESCRIBED MOTIONS

3.1 Spacecraft with Rotating Appendages

MetOp-SG is an example of a spacecraft with rotating appendages. It can be modelled as a multi-
body, which consists of a rigid main body, two scatterometers, and one solar array (S/A). To track the
Sun, the S/A is rotating with respect to the main body. This influence is significant on the dynamics
because the solar array is a large appendage and far away from the centre of mass of the main body. In
particular it changes the MoI of the overall multi-body system and cantilever frequency of the flexible
modes. By estimating the current rotation angle of the S/A, these changes of the dynamics are known.
This information can be exploited by a controller to improve the overall system performance.
To show the change in the dynamics because of the S/A rotation, consider the dynamics of the multi-
body model are briefly presented. The flexible dynamics of the S/A can be formulated as:

η̈ + diag{2 ζi ωi} η̇ + diag{ω2
i }η +Lrot ω̇S/A +Ltr r̈S/A = 0 (2)

where η are the modal coordinates, ζi and ωi are the damping and natural frequency of the i-th flexible
mode, L denote the rotational and translational modal participation factors, and ω̇S/A and r̈S/A are
the angular and linear acceleration of the S/A. Eq. 2 is expressed in a coordinate frame fixed to the
S/A.
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Figure 3: Exemplary Bode Plot of Multi-Body Model for MetOp-SG

These S/A flexibilities couple into the spacecraft’s rotational dynamics via the participation factors:

J ω̇ + ω × Jω + ḣ+ ω × h+L⊤
rot η̈ +mS/A rCS × r̈ + r̈ ×L⊤

trη =
∑

τ (3)

In Eq. 3, all quantities must be expressed in the same core body-fixed frame. The rotation of the S/A
changes the contributions of the participation factors L and thus the dynamical behavior. Specifically,
the eigenfrequencies of the flexible modes change with the S/A rotation angle as shown in Fig. 3.
In this example, the second flexible mode for the 0 rad does not participate much in the control axis
whose Bode plot is shown in Fig. 3. However, by rotating the S/A the flexible mode becomes more
visible in this control axis. This variation can significantly alter the stability and performance of the
control loop. Therefore, this effect should be included in the controller design.
The classical approach is to design a LTI controller that is robust against all expected S/A rotation
angles and thus covers the entire envelope of the flexible modes. This design is conservative because
it treats the S/A rotation angles as an unknown uncertainty. Only one fixed controller is synthesized
for all variants. Performance could be improved, however, by treating the S/A rotation as a varying
parameter instead of an uncertainty, whose measurement is available in real time. This controller
design is flexible to explicitly take into account the known dynamical changes and thus, expected to
be more performant than the classical approach.
To design the flexible controller, the scheduling parameter is defined either in form of an LFT or in
gridded form.
Without loss of generality the S/A rotation is assumed to be around the y-axis. The rotation of the
S/A is described by the direction cosine matrix (DCM):

T S/A(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (4)

The scheduling parameter in the DCM is the angle θ, which appears as arguments in trigonomet-
ric functions. However, the LFT formulation requires a polynomial expression with respect to the
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scheduling parameter. Therefore, the terms sin θ and cos θ are rewritten as:

sin θ =
4 ρ (1− ρ2)

(1 + ρ2)2

cos θ =
(1 + ρ2)2 − 8 ρ2

(1 + ρ2)2

with ρ = tan θ/4. The LFT formulation of Eq. 4 is therefore:

T S/A(ρ) =


(1+ρ2)2−8 ρ2

(1+ρ2)2
0 − (1+ρ2)2−8 ρ2

(1+ρ2)2

0 1 0
(1+ρ2)2−8 ρ2

(1+ρ2)2
0 (1+ρ2)2−8 ρ2

(1+ρ2)2


A minimal representation of the DCM with eight repetitions of ρ can be found in [24].
An alternative to the LFT is the gridding approach. The S/A angle is gridded in sufficiently fine steps
(e.g. ρi = {0◦, 30◦, . . . , 330◦}), which yields the gridded DCM:

T S/A(ρi) =

cos ρi 0 − sin ρi
0 1 0

sin ρi 0 cos ρi


3.2 Multi-Body/Multi-Actuator Space Telescopes

Future space telescopes such as the envisaged ATHENA mission will contain multiple instruments
that share the same optics, which for ATHENA is a mirror module. To align the line of sight to the
observation target with the currently active detector, the mirror needs to be moved w.r.t. the space-
craft’s main body by a dedicated mechanism such as a hexapod (see Fig. 4).

Figure 4: Space Telescope as Multi-Body/Multi-Actuator Spacecraft [35]

The rotational equations of motion (EoMs) of this multi-body system can be derived using e.g.
d’Alambert’s principle and have already been published in [29], [33]:

J
(B)

B ω̇B B/I +
[
ωB B/I×

]
J

(B)
B ωB B/I . . .

+
mC mM

m
[ rB CM×] r̈B CM + T BM J

(M)
M M ω̇M M/B . . .

+T BM SM (J
(M)
M ,ωM/B)TMB ωB B/I . . .

+T BM

[
ωM M/B×

]
J

(M)
M M ωM M/B . . .

+2
mC mM

m
[ rB CM×]

[
ωB B/I×

]
ṙB CM =

∑
τ

(B)
B ext

(5)
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In Eq. 5, a left subscript denotes the coordinate frame in which a quantity is expressed; specifically,
the core body-fixed B frame centered at the total spacecraft’s center of mass (CoM) B or the mirror-
fixed M frame centered at the mirror’s CoM M . The position of the mirror’s CoM w.r.t. the core
body’s CoM is denoted by rCM and ωM/B denotes the mirror’s angular rate w.r.t. the core body. The
attitude of the mirror w.r.t. the (core) body is denoted by the DCM TMB. The terms J (B) and J

(M)
M

denote the MoI of the total spacecraft and the mirror, respectively, around their CoMs. Similarly, τ (B)
ext

denotes the sum of all external torques around B.
The first two terms of Eq. 5 are the rigid-body dynamics of the total spacecraft, whereas the third
through seventh term are reaction torques acting on the spacecraft that are induced by the mirror’s
motion. For instance, the last term on the left hand side is a Coriolis effect.
The mirror’s motion is performed by dedicated actuators, hence it can be considered a prescribed
motion for the attitude control system. This allows a reformulation of the multi-body dynamics into a
rigid-body spacecraft attitude control problem with parameter-varying mass properties. Specifically,
the total MoI can be formulated as follows [33]:

J (B) = J
(C)
C + T BM J

(M)
M M TMB − mC mM

m
[rCM×]2 (6)

Denoting the mirror’s nominal position and attitude by rCM0 and TM0B, its true position and attitude
can be formulated as rCM = rCM0 + ∆rM and TMB = TMM0 TM0B ≈ (I − [φ×])TM0B, where
we have used small-angle approximations for the mirror’s angular motion w.r.t. its nominal attitude.
Inserting these expressions into Eq. 6 yields

J (B) = J
(B)
0 +∆JM(ρ) (7)

where J
(B)
0 is the nominal MoI of the total spacecraft (i.e. with the mirror at its nominal pose) and

∆JM(ρ) denotes the change of the MoI due to the mirror’s motion. Note that the MoI change depends
not only of mirror’s pose change, but also on its nominal pose (the last term of Eq. 6 contains the
product [rCM×] [∆rM×], which becomes a part of ∆JM(ρ) in Eq. 7).
The scheduling parameter ρ consists of the mirror’s pose change w.r.t. its nominal pose. In the most
general case, it therefore represents six degrees of freedom. Eq. 7 is already in a form suitable for an
LFT formulation. The LFT formulation of Eq. 7 can then be inverted using well-known methods [8].
As a result, the rigid-body dynamics subject to the prescribed mirror motion can be formulated as the
LPV system

G(s,ρ) = J−1(ρ)
1

s2
, (8)

Eq. 8 can be extended by parametric uncertainties and flexible dynamics of solar arrays [e.g. 33].

4 VARIABLE DISTURBANCE ESTIMATION AND COMPENSATION FOR LASER COM-
MUNICATION TERMINALS

Laser communication terminals (LCTs) have the potential to provide unprecedented transmission
rates to meet the needs of telecommunication satellites in the coming decades. LCTs are composed
of several components, including a telescope that is responsible for routing the incoming and out-
going laser beams through optical lenses and reflectors, a coarse pointing mechanism (CPM) that is
responsible for coarse pointing and large angular displacements, a fine pointing mechanism (FPM)
that is responsible for fine pointing, an acquisition and tracking sensor (ATS) that is responsible for
estimating the pointing errors, and Rx and Tx fibers that are used for communication to receive and
send laser beams with data.
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To establish the communication link between the satellite and the target, an acquisition sequence
is used to ensure proper alignment of the line of sight (LoS). The acquisition sequence involves
scanning using CPM to find the target beacon, centering of beacon using CPM, and establishment
and maintenance of communication link using FPM for fine control and CPM for desaturation.
In terms of dynamics and modelization, the telescope and CPM can be considered as rigid bodies.
The telescope provides the optical routing which can be modeled by gain transformations, and CPM
is a flexible structure connecting the telescope to the satellite interface. As a first assumption, we
can model the transfer between the input accelerations at the interface and the pointing error angle
by a second-order system. The resonant mode is driven mainly by the CPM attitude. However, this
transfer is supposed to be unknown. CPM transfer can be written in terms of fixed parameters and
CPM frequency mode, ωnC

:

HCPM(s, ωnC
) =

KCω
2
nC

s2 + 2ζCωnC
s+ ω2

nC

(9)

CPM frequency is supposed to be dependent on CPM attitude, which changes over time. Nevertheless,
regarding the control problem CPM modes can be considered to change quasi-statically, as its time of
change is several orders of magnitude higher than the associated time to control bandwidth. Hence,
the time dependency in CPM frequency has been removed.
The FPM can also be considered as a flexible structure that receives commands and produces an
angular deflection of the incoming and outgoing beams. In a similar way, we can model the transfer
between the commanded input signal and pointing error angle by a second-order system as a first
assumption. However, this transfer is supposed to be known with some uncertainty in the mode
frequency, ωnF

= ωF + ∆ωF and in the transfer gain KF = kF + ∆kF . However, in this case the
FPM frequency is completely time independent:

HFPM(s, ωnF
) =

KFω
2
nF

s2 + 2ζFωnF
s+ ω2

nF

(10)

In the sensor side, the ATS can be considered as well as a rigid body, and the transfer can be reduced
to a gain HATS . During acquisition, an image is generated from the incoming photons and electrons.
Then, image processing algorithms are used to compute the spot position and use this measurement
for feedback control. There are several sources of errors during the whole detection process that might
add measurement noise, nATS

The communication link is fragile, so high pointing stability is required to maintain data exchange.
The main disturbances impacting the LCT pointing performance come from the platform (e.g., ther-
moelastics, solar array’s rotation, Station-Keeping transients, star tracker noise, micro-vibrations),
although there are also additional contributors introduced by the terminal itself (e.g., measurement
errors, realization errors).
All platform disturbances are introduced at the interface level and consequently filtered/amplified
by CPM behavior depending on the disturbance associated frequency. Micro-vibrations with similar
frequencies to the CPM range are amplified and produce an important impact on Rx and Tx beams.
Therefore, this is the main contributor to pointing accuracy.
There are several sources of micro-vibrations, but the main contributor is associated with the reaction
wheels’ angular rates used to control the spacecraft attitude. The disturbance generated from each
RW can be modeled by a sinusoidal signal of a single variable frequency and amplitude, each of them
varying with the angular rate of the RW. The magnitude of the disturbance is given by a specified
envelope.
In the case of a satellite with 4 RWs, the micro-vibration disturbance coming from the RW could be
modeled as 4 sinusoidal signals, wmv,i (t). By design, the angular rates of 2 of them can be kept out
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of critical frequencies. However, the other 2 signals might coincide in the range of CPM frequency
mode at the same time. Hence, the complete micro-vibration signal can be written as:

wmv (t) =
2∑

i=1

Amv,i (t) sin (ωmv,i (t) t) (11)

Where the initial phase of the disturbance has been set to zero without loss of generality.
The typical evolution of RW frequency during a complete orbit can be approached by two linear
phases: one at a high-frequency rate and another one with a low-frequency rate. The angle rate of
RWs close to CPM frequency modes are not equal, so crossings could happen during operation.
The main challenge arises when the frequency of micro-vibrations disturbance coincides with CPM
frequency since it amplifies and could generate an important pointing error breaking the communica-
tion link.
To ensure a satisfactory rejection of the CPM-filtered disturbance, the controller Hctrl should be
designed to maximize its gain in the range of possible CPM resonance frequencies. In this case, the
transfer between the micro-vibration signal and the pointing error can be written as:

Sw→θ =
HCPM

1 +HFPMHctrlHATS

(12)

Since the controller must be robust to all the possible configurations of CPM modes, the classic
approach would be to synthesize a high bandwidth controller to cover the micro-vibrations and respect
the traditional stability criteria. Nevertheless, an adaptable estimator and controller could be used to
improve tracking performances and potentially decreasing hardware requirements, thus enabling cost
reduction.

5 PARAMETER-VARYING GYRO-STELLAR ESTIMATION

5.1 GSE with Moving Star Tracker

For multi-body/multi-actuator spacecraft architectures, the sensors need not necessarily be mounted
on the same (sub-)body. Consider the case where the gyroscope is mounted on the core body, while
the star trackers (STRs) are mounted on a movable minor body.
A typical gyro-stellar estimator (GSE) is a version of an extended Kalman filter (EKF) that updates
the attitude estimation error state [25, Ch. 6.2]. The Kalman gain at time step tk is computed as

Kk = P−
k H⊤

k

(
HkP

−
k H⊤

k +Rk

)−1
, (13)

where P−
k is the a priori estimation error covariance, Hk is the measurement matrix, and Rk is the

STR noise covariance matrix. For many spacecraft, both the measurement matrix H and the STR
noise covariance R are constant. As a result, the Kalman gain will converge to a constant value. To
reduce the computational load, the Kalman gain can even be preset to the (expected) optimal value,
i.e. the GSE becomes essentially a constant-gain EKF.
In our case, however, the STR’s attitude w.r.t. the main body can change, hence R (which is expressed
in the main body frame) is not constant anymore:

Rk = T BU,k RU T⊤
BU,k = T BU0 ∆T⊤

k RU ∆T k T
⊤
BU0

(14)

In Eq. 14, RU is the STR noise covariance matrix expressed in its unit frame, which is constant. The
varying parameter is the attitude of the STR w.r.t. the main body T⊤

BU,k, which can be split up into the
constant nominal attitude T BU0 and the deviation ∆T k from the nominal attitude.
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From Kalman filter theory, Eq. 13 is the gain that minimizes the trace of the a posteriori estimation
error covariance P+

k [19, Ch. 3.3]. In the derivation, the matrices P−
k , Hk, and Rk are allowed to

be time-varying. Therefore, updating Eq. 14 at each time step with the current STR alignment and
inserting into Eq. 13 yields the optimal instantaneous Kalman gain.
From a practical point of view, the improvement of attitude estimation performance (including a
reduction of the settling time of the filter) has to be traded against the additional computational load.
As on-board computers become more powerful, we expect the latter factor to become less important
over time.

5.2 GSE for Agile Spacecraft

The continuous-time process model of a three-axis GSE is [25, p. 245]:(
δα̇

δβ̇

)
=

[
− [ω̂×] 0

0 0

] (
δα
δβ

)
+

[
−I 0
0 I

] (
νarw

νrrw

)
(15)

The estimation states are the small angle representation δα of attitude estimation error and the gyro
bias estimation error δβ. The process noise inputs are the angular random walk νarw and the rate
random walk νrrw.
The state matrix of the filter contains the current estimate of the angular rate ω̂. For Nadir- or inertial
pointing spacecraft, the true angular rate (and for a functioning GSE, also its estimate) is approx-
imately constant. During rotation maneuvers, however, Eq. 15 describes a LPV system where the
angular rate estimate is the time-varying parameter (it is not part of the state, but it available in real-
time from the filter’s last propagation or update).

6 PARAMETER VARIATIONS DURING AOCS DESIGN

The uncertainty of the mass properties changes during the design of the spacecraft throughout the
project phases. Initially, the MoI is not well known and a typical design uncertainty of 20 % is
assumed. Towards the end of the project, the design of the spacecraft is fixed, so that the remaining
uncertainty can reduce to around 3 %.
A simple gridded LPV model for the MoI change is given by the scaling of the MoI matrix as a whole:

J(ρi) = ρi J ρi ∈ [ρmin, ρmax]

Alternatively, an LFT model can be formulated as:

FU(M ,∆) = FU

([
0

√
r J1/2

√
r J1/2 J1/2

]
, δJ I

)
where r is the relative uncertainty of J (e.g. 20 %). The matrix square root exists because the inertia
matrix is symmetric and positive definite.

7 CONCLUSIONS

Despite comparatively slow dynamics, parameter-varying effects are worth considering for some
spacecraft GNC problems. As illustrated by the examples discussed in this paper, the parameter
variations sometimes do not affect the dynamics directly, but have an impact on the design process it-
self. Also, explicitly considering parameter variations may not improve classical control performance
and robustness metrics, but can improve e.g. mission performance or design cost.
Future work will focus on the definition of suitable indicators whether robust LTI methods are suffi-
cient or whether parameter-varying techniques should be used to meet the requirements.
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