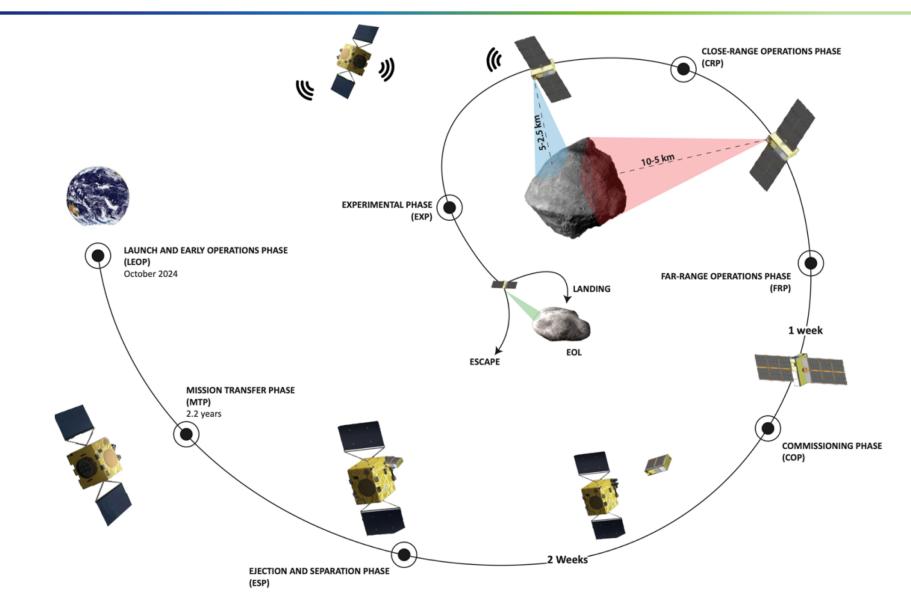


The Hera Milani CubeSat Mission


Planetary Defense Conference

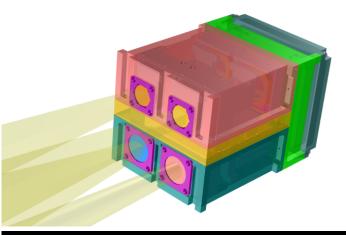
26th April 2021

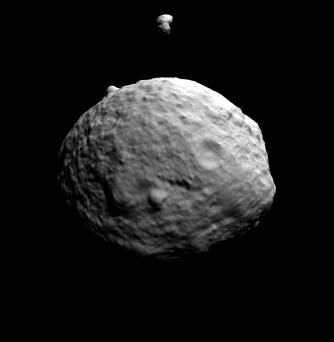
F. Topputo and the Milani Team

Milani mission concept

- How to provide complementary observations to the Hera planetary defence mission of retrieving information about Didymos asteroids?
- How to support the Hera deep-space Radio science Experiment?
- How to enhance the overall science return of the mission?

TTM

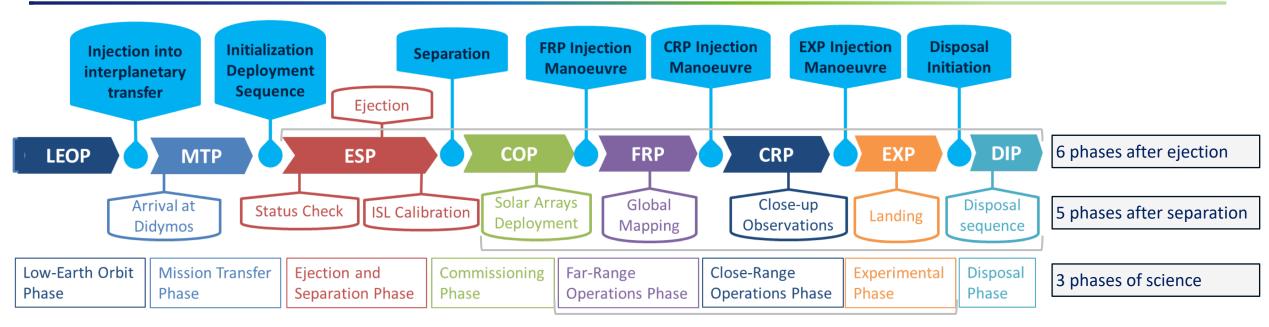

How to enable key mission capabilities of CubeSats for deep space applications?


Obj ID	Objective
SO1	To support the determination of the global properties of Didymos asteroids
SO2	To determine taxonomy and mineral composition of Didymos asteroids
SO3	To detect areas of oxidized silicates
SO4	To characterize the sub-millimeter microstructure of the Didymos bodies surface
SO5	To map the distribution of the fall-back ejecta on Didymos asteroids.
SO6	To compare mature and freshly exposed material at global scale Primary
S07	To characterize the crater caused by DART impact
SO8	To detect the shock-darkening (if any) of the freshly exposed material within the crater
SO9	To support Hera Gravity Field measurements enhanced by ISL network
SO10	To detect inorganic materials, volatiles (e.g. water) and light organics
TO1	To provide ISL communication with Hera
TO2	To provide relative positioning
TO3	To measure the effects of the asteroid environment on key hardware
TO4	To validate autonomous navigation algorithms

ASPECT

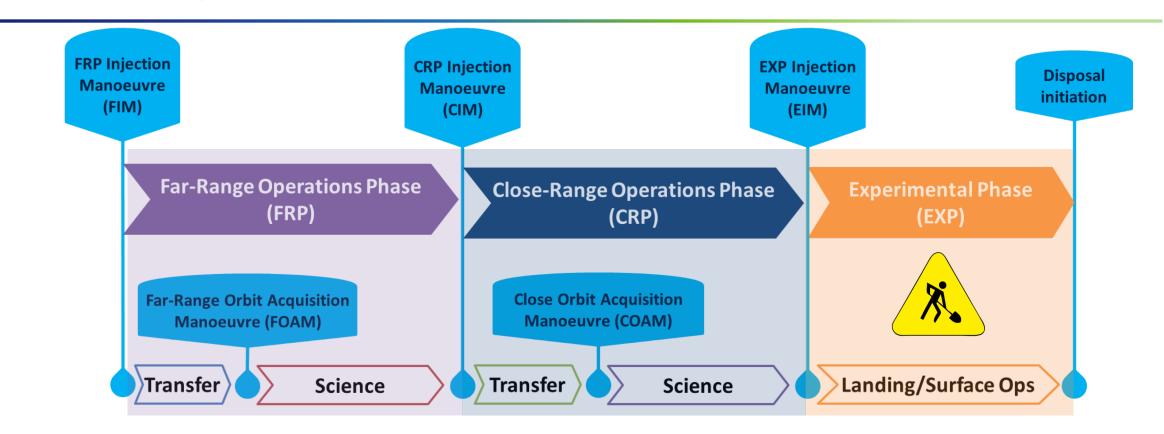
- Spectral imager (500 2500 nm)
- 4 channels

Parameter	VIS channel	NIR1 channel	NIR2 channel	SWIR channel
Field of View [deg]	10° x 10°	6.7° x 5.4°	6.7° x 5.4°	5° circular
Spectral range [nm]	500–900	850–1275	1225 –1650	1600–2500
Image size [pixels]	1024 x 1024	640 x 512	640 x 512	1 pixel
Pixel size [µm]	5.5 μm x 5.5 μm	15 μm x 15 μm	15 μm x 15 μm	1 mm
No. spectral bands	Ca. 14	Ca. 14	Ca. 14	Ca. 30
Spectral resolution [nm]	< 20 nm	< 40 nm	< 40 nm	< 40 nm

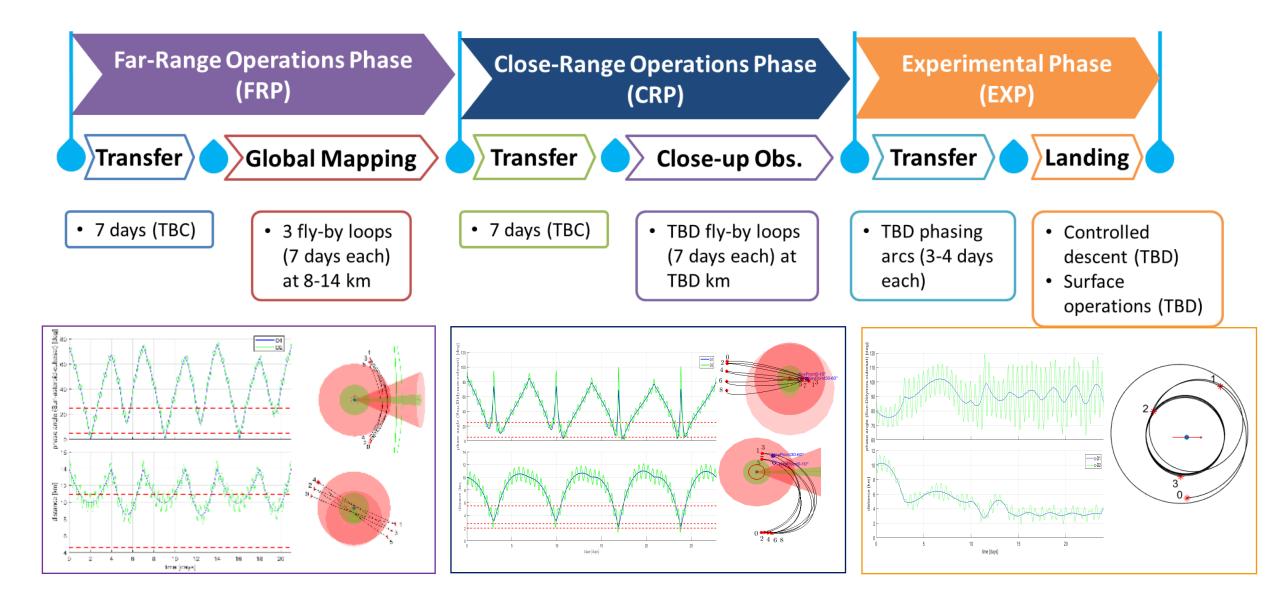


- Micro-thermogravimeter
- Detects dust particles (<5-10 µm), volatiles (e.g., water) and light organics
- Monitors the molecular contamination (to support other instruments/subsystems)
- Composed of quartz crystals, TCS, Proximity Electronics

Sensor Type	Quartz Crystal Microbalance (QCM)-based device	
Resonant Frequency [MHz]	10	
Mass [g]	90	
Volume [mm]	50×50×38	
Sensitive area [cm ²]	1.5	
Power [W] (Trange: 233K - 373K)	<1 W (peak, PE+crystals); 0.8 (mean)	
Power [W] (Trange: 77K - 373K)	<4 (peak, PE+crystals+heater PE); 3.8 (mean)	
Data rate [bit/measurement]	54	
Particles size detection range	from 5-10 μm to sub-μm particles	
Operational temperature range [K]	from 233 to 350K (PE components)	
Crystal working temperature range [K]	from 123 to 473K	
Non-operational temperature range [K]	from 77 to 403K	
Channels (read-out and controlled)	3 RTDs and 1 frequency; 2 heaters control	
Methods/Technique used	1.Dust and contaminants accumulation (passive mode) 2.TGA cycles (active mode)	

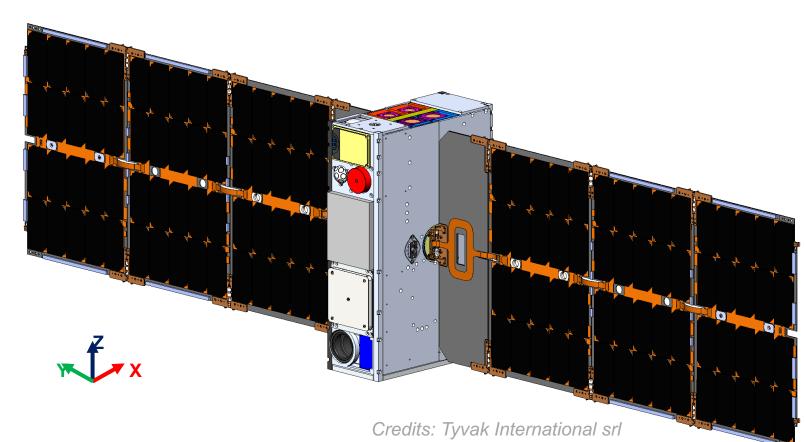


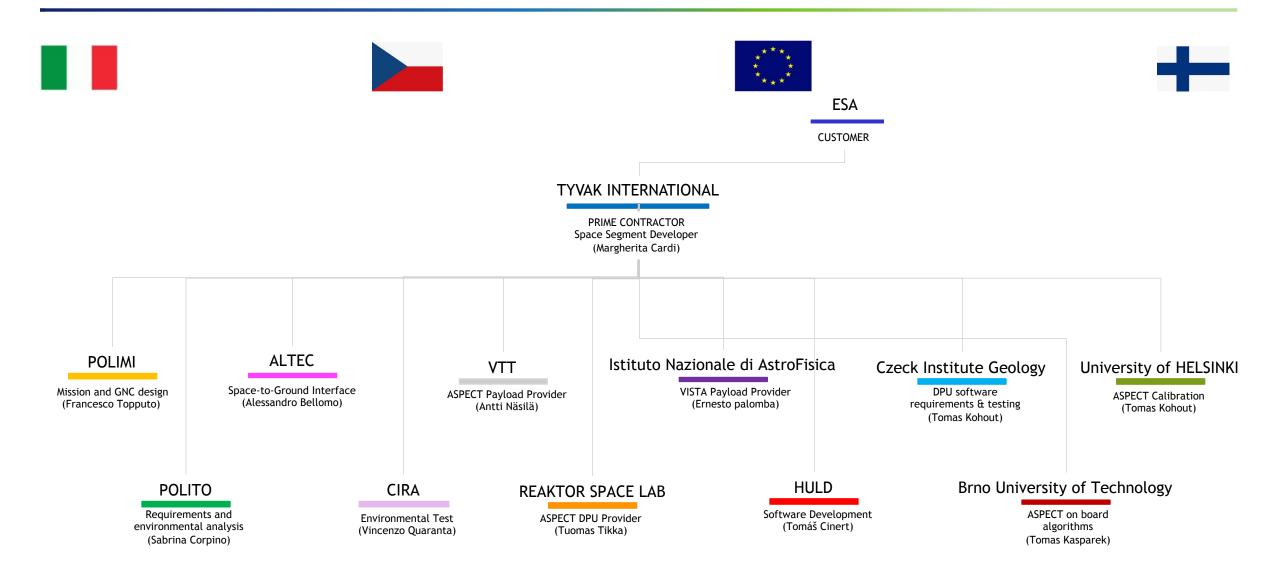
Milani mission design


Phase	Start		End	
Fliase	Event	Date	Event	Date
LEOP	Launch of Hera mission	Oct 2024	Injection into interplanetary transfer	End of 2024
MTP	Injection into interplanetary transfer	End of 2024	Deployment Initialization Sequence	Mar 2027
ESP	Deployment Initialization Sequence	Mar 2027	Separation	15/03/27
СОР	Separation	15/03/27	FIM (FRP Injection Manoeuvre)	23/04/27
FRP	FIM (FRP Injection Manoeuvre)	23/03/27	CIM (CRP Injection Manoeuvre)	17/04/27
CRP	CIM (CRP Injection Manoeuvre)	17/04/27	EIM (EXP Injection Manoeuvre)	09/05/27
EXP	EIM (EXP Injection Manoeuvre)	09/05/27	Disposal Initiation	01/06/27 (TBC)
DIP	Disposal Initiation	01/06/27 (TBC)	EoL	02/06/27 (TBC)

Milani scientific phases

	Mapping of D1 and D2	Mapping of D2, impact crater (hi-res)	
Resolution Req	≤ 2 m/px (for both D1 and D2)	 ≤ 1 m/px (mapping D2) ≤ 50 cm/px (selected features of D2) 	Enhanced science, technological demonstrations,
Phase Angle Req	 5-25 deg (global coverage of D1, D2) 0-60 deg (surface microstruct. of D1, D2) 	 5-25 deg (global coverage of D2) 0-10 and 30-60 deg (crater imaging) 0-60 deg (surface microstruct. of D1, D2) 	landing attempt


Milani mission profile


Milani CubeSat configuration

System Architecture

- Based on Trestles 6U bus
- Mission Specifics:
 - Payloads: ASPECT + VISTA
 - Navigation Camera
 - LIDAR
 - Propulsion System
 - Inter-Satellite Link (ISL) Radio
 - Umbilical Interface to HERA mothercraft
 - CubeSat IF Board (CIB)
 - External CRS
 - Life Support Interface Board (LSIB)

Milani consortium

