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ABSTRACT

Many observation satellites are subject to attitude constrains arising from peculiar mission re-
quirements or environmental conditions. These obstructions often constrain the direction of the
thrust vector to remain within a cone. In this study, we investigate the local controllability of
station-keeping maneuvers of satellites with low thrust capabilities or small chemical impulsions
on nominal periodic orbits subject to such constraints. We offer a numerical methodology based
on convex optimization to identify the minimum cone angle guaranteeing local controllability for
a specific orbit. We compare the results with a dynamical approach using Floquet Modes. An
illustrative example inspired by the James Webb Space Telescope is proposed. Specifically, we
consider a satellite is on a Halo orbit around L2 in the Sun-Earth circular restricted three-body
problem.

1 INTRODUCTION

Due to specific mission goals, many satellites are subject to cone constraints on the thrust direction.
For example, James Webb Space Telescope (JWST), launched on December 25, 2021 toward a Halo
orbit around the Sun-Earth L2 libration point, has a thermal shield that is designed to prevent the
telescope and other instruments from overheating [1]. Therefore, JWST is constrained to always keep
its attitude such that the angle between the normal to the shield and the Sun direction is smaller than 53
deg, which results in conical constraints for the propulsion directions. Using chemical propulsion to
perform small impulsive corrections maneuvers or a low-thrust satellite with very specific constraints
on the control does not always allow to perform any desirable maneuver, as we showed in [2], where
the controllability of non-ideal solar sails in orbit about a planet was investigated.
In [2], we considered elliptic Keplerian orbits, and formulated a convex optimization problem aimed
at assessing whether some functions of the integrals of motion could not be decreased after one orbital
period. Existence of such functions implies that there is a half-space of the neighborhood orbit’s
coordinates (orbital elements) where motion is locally forbidden [3]. In that paper, we strongly relied
on the super-integrability of the Kepler problem. Here, we extend that methodology to infer local
controllability of station-keeping satellites for any periodic orbit, regardless the dynamical system
at hand. Given the projection of the nominal orbit on a surface of section, the methodology aims
at verifying if a half space of such projection exists where the motion is forbidden after one orbital
period. Variation of parameters is used to achieve a convex optimization problem that investigates the
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existence of obstructions to variations of local integrals of motion. Conical constraints are enforced
by leveraging on the formalism of positive polynomials postulated by Nesterov [4], so that a finite-
dimensional formulation of the convex program is achieved. As a case study, we consider a Halo
orbit around the Sun-Earth L2 libration point, and show that there exist a minimum cone thrust angle
(αmin) necessary for the controllability of the orbit. By this we mean, that for spacecraft with a thrust
cone angle limitation α < αmin, we are not able to move everywhere around the neighborhood of
an initial position. Even though Halo orbit in the circular restricted three-body problem (CRTBP) is
considered in the case study, we emphasize again that the methodology is developed for a generic
locally-integrable system.
In this paper, we will also look at the problem from a dynamical system theory approach, as studied
in [5]. The dynamics around a periodic orbit in the CRTBP can be described with the Floquet modes,
a periodic reference frame that splits the linear dynamics in 3 reference planes: a saddle, a centre and
a neutral plane. The instability of the orbit is due to the hyperbolic nature and is contained in the
saddle plane. In [5] we also showed how the projection of a thrust direction on the saddle plane is
related to the cost of a station-keeping maneuver, and how restrictions on this direction affected the
station-keeping strategy. Here we will describe how to use this formulation to derive the cone angle
limitations and how it compares to the previous approach.

2 EQUATIONS OF MOTION

Consider the equations of motion of a control-affine dynamical system of dimension nwithm controls
subject to cone constraint on the control, namely

dx
d t

= f(x) +B(x)u, x ∈M ⊆ Rn, u ∈ Kα ⊂ Rm, ∥u∥ ≤ ε (1)

Here, Kα is a cone of revolution characterized by an opening angle α, ε is thrust magnitude, which is
assumed to be small, and f(x) denotes a generic drift, e.g., for the CRTBP we have
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 (2)

where µ is the mass ratio of the system, x = (rx, ry, rz, vx, vy, vz) are position and velocity coordinates
in the classical synodic frame, and r1 and r2 are distances between the satellite and the two main
bodies:

r1 =
√
(rx + µ)2 + r2y + r2z ,

r2 =
√

(rx − 1 + µ)2 + r2y + r2z .

3 NECESSARY CONDITION FOR LOCAL CONTROLLABILITY

Given the conical constraint on the thrust vector, u ∈ Kα, we are interested in determining if Sys-
tem (1) is locally controllable. Specifically, given a periodical (uncontrolled) reference orbit y(t) of
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Figure 1: Forbidden half-space of δx0 generated by pδx0

period T and a surface of section S(x), and denoting x0 the coordinates of the orbit at the crossing of
S(x), namely 

d y
d t

= f(y)

y(0) = y(T ) = x0

S(x0) = 0

(3)

we are interested in determining if controls in Kα are capable of moving the crossing point on S(x)
in an open neighborhood of x0 after a period T , as shown in Fig. 1. To this purpose, we introduce a
necessary condition on α for the given orbit in order to have local controllability under the constraint
u ∈ Kα.
Denoting by Φ(t, x0) the state transition matrix of the system, and by δx0 ∈ Tx0S a perturbation of
the initial state x0, uncontrolled linearized motion in proximity of the periodic orbit is governed by

δx(t) = Φ(t, x0)δx0. (4)

Linearization of Eq. (1) gives:

d δx
d t

=
∂ f

∂ x

∣∣∣∣
y

δx+B(y)u. (5)

Recalling that
dΦ
d t

=
∂ f

∂ x
Φ, differentiation of Eq. (4) and substitution in Eq. (5) yields the classical

variation of parameters

d δx0
d t

= Φ−1(t, x0)B(y(t))u, δx0 ∈ Tx0S, u ∈ Kα. (6)

The necessary condition for local controllability of the satellite is written in terms of possible displace-
ments of the system on the Poincaré map, i.e. by verifying if the system can be moved everywhere
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in the tangent space Tx0S after one orbital period. For mathematical proof of the necessary condition
please refer to [3]. Negation of this condition implies the existence of a not accessible half-space
in the neighborhood of x0, as shown in Fig. 1. Since the interior thrust directions of Kα can be ap-
proximated by combinations of vectors on the boundary of the cone, ∂Kα, we propose to solve the
following problem in order to verify the necessary condition:

if ∃ pδx0 ∈ T ∗
x0
S, pδx0 ̸= 0 such that〈

pδx0 ,
d δx0

d t

〉
≥ 0, ∀ u ∈ ∂Kα, ∥u∥ = 1, t ∈ [0, T )

then System (1) is not locally controllable in one orbit.

(7)

If pδx0 solution of Problem (7) exists, then the linear functional

V (t, u) =
〈
pδx0 , Φ

−1(t, x0)B(y(t))u
〉

cannot be decreased for any u ∈ Kα and t ∈ [0, T ), hence motion is forbidden in the half-space with
normal pδx0 , and the satellite cannot move in any direction pointing inside this half-space after one
orbital period. Absence of forbidden directions for control of satellites is crucial for station-keeping.

4 CONVEX OPTIMIZATION PROBLEM TO VERIFY THE NECESSARY CONDITION

A practical check of the necessary condition is carried out by solving

max
J, ∥pδx0∥≤1

J s.t.〈
pδx0 , Φ

−1(t, x0)B(y(t))u
〉
≥ J, ∀ u ∈ ∂Kα, ∥u∥ = 1, t ∈ [0, T ].

(8)

Problem (8) is convex and semi-infinite, because inequality constraints need to be enforced for all u
on the surface of the cone and for all time between 0 and the period T . Evaluating inequalities in the
interior of the cone is not necessary because dynamics is affine in u. If J∗, solution of Problem (8), is
strictly positive, then the necessary condition is not satisfied and the system is not locally controllable
for the given α and x0. The constraint ∥pδx0∥ ≤ 1 is preferred to the equality condition ∥pδx0∥ = 1 to
preserve the convexity properties of Problem (8).
For mission design purposes, it is interesting to know which is the minimum α angle of the thrust
cone satisfying the necessary condition. This angle can be identified by solving

min
α

α s.t.

J∗(α) = 0
(9)

where J∗(α) denotes solution of Problem (8) for a given α. Problem (9) can be efficiently solved by
means of a simple bisection method.
Numerical solution of Problem (8) is achieved by:

1. ParametrizingKα by means of an angle δ, as shown in Fig. 2, to avoid discretization of the cone
by using, for example, a polyhedral cone with a finite number of generators. Thus, vectors of u
on the surface of the cone can be expressed as:

u =

 cosα
cos δ sinα
sin δ sinα

 (10)

with α ∈ [−π
2
, π
2
] and δ ∈ [0, 2π];
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Figure 2: Parametrization of the control vector.

2. Given that u is trigonometric in δ, using Fourier transform for Eq. (6):

Φ−1(t, x0)B(y(t))u =
1∑

l=−1

d∑
k=−d

C(k,l)eikteilδ

where C(k,l) is the kl-th coefficient of the Fourier transform of Φ−1(t, x0)B(y(t))u and d the
degree of truncation of the series in t. Note that u is already an exact trigonometric polynomial
of degree 1 in δ. Thus, the inequality from Eq. (8) becomes:

〈
pδx0 , Φ

−1(t, x0)B(y(t))u
〉
≥ J ⇐⇒ pTδx0

(
1∑

l=−1

d∑
k=−d

C(k,l)eikteilδ
)

− J ≥ 0 (11)

In the example of a Halo orbit given in this paper, we decide to truncate the Fourier series at d =
30, as the convergence of the coefficients is enough to find the minimum cone angle, as shown
in Fig. 3;

3. Using the formalism of positive polynomials [4, 6] to enforce positivity constraints.

Consider the basis of bivariate trigonometric polynomials of degree d in t and 1 in δ: P(t, δ) =[
1, eiδ

]T ⊗
[
1, eit, e2it, . . . , edit

]T =
[
1, eit, e2it, . . . , edit, eiδ, eiteiδ, e2iteiδ, . . . , editeiδ

]T and C
vector of coordinates of the polynomial in the basis. Its corresponding squared functional system is
S2(t, δ) = P(t, δ)PH(t, δ), where PH(t, δ) denotes conjugate transpose of P(t, δ). Let N be the
dimension of P(t, δ) (N = 2× (d + 1) in our application) and ΛH : CN → CN×N a linear operator
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Figure 3: Convergence of Fourier coefficients

mapping coefficients of polynomials in P(t, δ) to the squared base, so that application of ΛH on
P(t, δ) yields

ΛH(P(t, δ)) = P(t, δ)PH(t, δ) (12)

and define its adjoint operator Λ∗
H : CN×N → CN as

⟨Y, ΛH(C)⟩H ≡ ⟨Λ∗
H(Y ), C⟩H , Y ∈ CN×N , C ∈ CN . (13)

Theory of squared functional systems postulated by Nesterov [4] proves that trigonometric poly-
nomial is non-negative if and only if a Hermitian positive semidefinite matrix Y exists such that
C = Λ∗

H(Y ). Dumitrescu extends this theory for multivariate trigonometric polynomials in [6] and
shows that all nonnegative bivariate trigonometric polynomials can be written as sum-of-squares. This
equivalence is false for three or more variables.
Thus,

〈
P(t, δ), C

〉
H

is non-negative for all t ∈ [0, T ) and for all u ∈ Kα if and only if a Hermitian
positive semidefinite matrix Y exists such that C = Λ∗

H(Y ), namely

⟨P(t, δ), C⟩H ≥ 0, t ∈ [0, T ), u ∈ Kα ⇐⇒ ∃Y ⪰ 0 : C = Λ∗
H(Y ). (14)

In fact, it holds in this case that〈
P(f, δ), C

〉
H
=
〈
P(f, δ), Λ∗

H(Y )
〉
H
=
〈
ΛH(P(f, δ)), Y

〉
H
,

=
〈
P(f, δ)PH(f, δ), Y

〉
H
= PH(f, δ)Y P(f, δ) ≥ 0.

(15)

For trigonometric polynomials Λ∗ is given by

Λ∗
H(Y ) =


tr(
〈
Y, T00

〉
)

...
tr(
〈
Y, Tkl

〉
)

...
tr(
〈
Y, T21

〉
)

 k = 0, 1, 2, l = 0, 1. (16)
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where Tj j = 0, 1, 2 are the elementary Toeplitz matrices with ones on the j-th diagonal and zeros
elsewhere and Tkl are obtained from a Kronecker product of such matrices, e.g.,

T0 =

(
1 0
0 1

)
, T1 =

0 1 0
0 0 1
0 0 0



T10 = T0 ⊗ T1 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


(17)

Finally, the inequality in Eq. (8) is rewritten as an linear matrix inequalities (LMI):〈
pδx0 , Φ

−1(t, x0)Bu
〉
− J ≥ 0, t ∈ [0, T ), u ∈ ∂Kα

⇐⇒ ∃ Y ⪰ 0 such that C pδx0 − e1J = Λ∗
H(Y )

(18)

where Y ∈ CN×N is a Hermitian matrix to be determined, with N = 2 × (d + 1) = 62, and e1 is a
vector of dimension N with 1 in the first position and zeros elsewhere. Hence, the finite-dimensional
counterpart of Problem (8) is

min
J,∥pδx0∥≤1, Y ∈C62×62

J s.t.:

Y ⪰ 0

Λ∗
H(Y ) = C pδx0 − e1J

(19)

Solution of Problem (9) is carried out by means of a simple bisection algorithm, which does not
require the evaluation of derivatives of the non-smooth function J∗(α) (we note that Problem (8) has
trivial solution J = 0, pδx0 = 0 for α > αmin). The CVX software [7, 8] is used to solve the
convex Problem (19). Fourier coefficients of Φ−1(t, x0)B(y(t))u are evaluated by means of the fast
Fourier transform (FFT) algorithm. The only relaxation of Problem (19) with respect to Problem (8)
is truncation of the Fourier series. Remarkably, no discretization was done to approximate u on the
surface of a cone.

5 DYNAMICS AROUND HALO ORBITS

Understanding the local behavior of the flow associated to a dynamical system near a periodic orbit
gives insight on station-keeping strategies, as well as the effects of different error sources. The study
of the local behaviour is generally done throughout the first order variational equations. To fix no-
tation, let us denote by φ the flow associated to the equations of motion (Eq. 2). Hence, φτ (x0) is
the image at a time t = τ of a point x0 ∈ R6 at t = 0, and Φ(τ, x0) = Dφτ (x0) is the first order
variational of φτ (x0) with respect to the initial condition (x0). For h ∈ R6, we have

φτ (x0 + h) = φτ (x0) +Dφτ (x0) · h+O(|h|2).

Provided h small, φτ (x0)+Φ(τ, x0) · h gives a good approximation of φτ (x0 + h). Finally, the linear
dynamics around a periodic orbit can be described through the eigenvalues and eigenvectors of the
monodromy matrix of the orbit Φ(T ), where T is the period of the orbit.
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It is well known, that for most Halo orbits in the CRTBP, the eigenvalues (λ1,...,6) of the monodromy
matrix, Φ(T ), satisfy: λ1 > 1, λ2 < 1 are real, λ3 = λ̄4 are complex with modulus 1 and λ5 = λ6 = 1.
Where the geometrical meaning of these three pairs of eigenvalues and their associated eigenvectors
is [9]:

• The first pair (λ1, λ2) ∈ R, verify λ1 · λ2 = 1, and are related to the hyperbolic character of the
orbit. The value λ1 is the largest in absolute value, and is related to the eigenvalue e1(0), which
gives the most expanding direction. After one period, a given distance to the nominal orbit in
this direction is amplified by a factor of λ1. Moreover, at each point of the orbit, the vector
e1(τ) = Dφτe1(0) together with the vector tangent to the orbit, span a plane that is tangent to
the local unstable manifold. In the same way λ2 and its related eigenvector e2(0) are related to
the local stable manifold with e2(τ) = Dφτe2(0).

• The second pair (λ3, λ4) ∈ C, verify λ3 = λ̄4 and of modulus 1. Together with the other two
eigenvalues (λ5 = λ6) describe the central motion around the periodic orbit. The monodromy
matrix restricted to the plane spanned by the real e3(0) and imaginary e4(0) parts of the eigen-

vectors associated to λ3, λ4 along the orbits is a rotation of of angle Γ = arctan

(
Im(λ3)

Re(λ3)

)
.

• The third couple (λ5 = λ6 = 1) is associated to the neutral directions (i.e. non-unstable modes).
There is only one eigenvector of Φ(T ) with eigenvalue 1, this vector is the tangent vector to the
orbit and we call it e5(0). The other eigenvalue is associated to variations of the period, or any
other variable which parameterised the family of periodic orbits.

Finally, the functions ei(τ) = Dφτei(0), i = 1, . . . , 6 can be used to describe the linear dynamics of
the phase space around a periodic orbit, and from them we can define the Floquet Modes around the
Halo orbit:

e1,2(τ) = e1,2(τ) exp

(
−τ lnλ1,2

T

)
, (20)

e3(τ) = cos

(
−tΓ
T

)
e3(τ)− sin

(
−τ Γ

T

)
e4(τ), (21)

e4(τ) = sin

(
−tΓ
T

)
e3(τ) + cos

(
−τ Γ

T

)
e4(τ), (22)

e5(τ) = e5(τ), (23)
e6(τ) = e6(τ) + ε(τ)e5(τ), (24)

where T is the period of the orbit (for further details see [9]).
The Floquet Modes are a periodic reference frame that helps us describe the natural dynamics in the
vicinity of a periodic orbit. Using the Floquet Modes reference frame, the dynamics in the vicinity
of the orbit is simple: on the planes generated by {e1(t), e2(t)} the motion is a saddle, having the
trajectory escape, with an exponential rate, along the unstable direction; on the planes generated
by {e3(t), e4(t)} the dynamics consists of a rotation around the periodic orbit; and on the planes
generated by {e5(t), e6(t)} the dynamics is neutral. Figure 4 shows the evolition of a schematic
representation of the linear dynamics around a Halo orbit using this reference frame, where the origin
of coordinates (in each projection) corresponds to the periodic orbit.

5.1 Station-keeping strategies

The goal of any station-keeping strategy is to keep the spacecraft close to a nominal orbit. Given the
instability around a Halo orbit, in order to remain close to it, small correction maneuvers are required
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Figure 4: Schematic representation of the dynamics around a halo orbit using the Floquet modes
ei(t).

from time to time, where the size of these maneuvers depends on their frequency and thrust direc-
tion [1, 5]. In the literature we find different approaches to determine the optimal delta-v maneuvers.
A classical approach used in many missions like the JWST, is the velocity constraint approach, where
the goal is to find a delta-v maneuver that ensures that after 1.5 orbital revolutions, the vx component
of the trajectory when crossing the y = 0 plane is zero, which can be solved with a classical targeting
method. The underlining idea behind this strategy is to keep orbiting about the libration point, since
a Halo orbit satisfies vx = 0 at the plane y = 0.
We use the Floquet Modes reference frame to visualize the behaviour of the trajectory each time a
station-keeping maneuver is applied. Note that a delta-v maneuver is an instantaneous change in
velocity, and is seen as a jump in the phase space. The first row of Figure 5 shows (in dimensionless
units (DU)) the evolution of a trajectory close to a Halo orbit when no station-keeping maneuvers
are applied. While the second row of Figure 5 is the trajectory when station-keeping maneuvers are
applied. On the left-hand side of the plot we have the evolution of the trajectory on the XY Z plane.
The other three plots (from left to right) are the projection of the trajectory on the saddle, centre and
neutral plane defined by the Floquet modes. As we can see on the top plot, the trajectory escapes
along the unstable direction on the saddle plane projection, while rotation around the origin in the
centre plane. Note that once the trajectory is far from the nominal orbit the linear dynamics no longer
holds, showing an unexpected behaviour. On the bottom plots, the station-keeping maneuvers are
jumps in the trajectory. Notice how on the saddle projection, these maneuvers cancel the instability
by bringing the trajectory towards the stable direction (e2). On the centre plane we see a sequence of
rotations around the centre, and each time a maneuver is applied the distance to the centre varies.
In [5] we compared this classical approach (velocity constraint) with the Floquet Mode approach,
showing that their behaviour in the Floquet modes reference frame was the same: each time a station-
keeping maneuver was performed, the trajectory will come close to the stable manifold of the nominal
orbit, canceling the unstable component of the trajectory, as we can see in Figure 5. We also saw that
the magnitude of the station-keeping maneuver is related to the jump on the saddle plane, from the
time of the maneuver towards the stable direction, along a given delta-v direction.
To illustrate the relation between the size of a station-keeping magnitude and the thrust direction
we have performed the following simulations. Take an initial condition on the halo orbit displacing
10−6 DU (≈ 150 km) along the unstable direction (i.e., its position in the Floquet mode basis is
s = (±10−6, 0, 0, 0, 0, 0)T ). Then, for a set of different thrust directions, determine the required
station-keeping maneuver along that thrust direction. To simplify the analysis, we have consider only
thrust directions in the xy-plane u = (0, 0, 0, cosα, sinα, 0)T , with α ∈ [−90 90]◦ (Note that α
corresponds to the cone angle).
Figure 6 shows the relation between the magnitude of delta-v maneuver and the jump on the saddle
plane. The two left subplots show the projection on the saddle plane of the delta-v maneuver, while the
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(a) Evolution of the Floquet components for a trajectory close to halo orbit with no station-keeping maneuvers.

(b) Evolution of the Floquet components for a trajectory close to a halo orbit with station-keeping maneuvers.

Figure 5: Comparison between trajectories with and without station-keeping maneuvers. Black ar-
rows show the sense of orbital motion, and cyan arrows show the jumps associated to maneuvers.

right subplots show the size of the maneuver as a function of the cone angle α. Note how on the left
plots, depending on the initial location on the saddle plane (c1 = +10−6 or c1 = −10−6), there is only
a set of directions that allows one to control the spacecraft, and that in all cases the maneuver cancels
the unstable mode (i.e. produces a jump in velocities such that c1 = 0). The two right plots use the
same color-code as the corresponding left plot for the size of the delta-v maneuver. Where the vertical
red and green lines correspond to the α values of the direction given by the position components of
the unstable and stable directions, respectively. Notice that the maneuver directions with smaller
magnitudes correspond to those directions whose projection on the saddle plane is close to (±1, 0)
and are close the the stable direction (green dotted line). While the largest maneuver magnitudes are
close to (0,±1) on the saddle plane and are close to the the unstable direction (red dotted line).
Finally, describing the station-keeping strategy throughout its projection on the saddle plane can help
us determine for which cone angles the system is not controllable. As we can see in Figure 6, the set
of delta-v directions that can bring the trajectory towards the stable direction will depend on where
the spacecraft is at the time of the maneuver on the saddle plane projection. However, regardless of
where we are on the saddle plane, maneuvers whose projection on the saddle plane are parallel to
(0,±1) will not be able to bring the trajectory towards the stable manifold.

6 CASE STUDY

Let us consider a periodical Halo orbit situated around Sun-Earth L2 point, as shown in Fig. 7. It
is the same point where James Webb Space Telescope was sent. We suppose that a satellite has to
perform station-keeping around this orbit. The given satellite can produce either small impulsions
using chemical propulsion or low-thrust engines, and has a conical constraint on the directions of the
thrust. Our goal is to determine what is the maximum conical constraint that can be imposed on the
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(a) Initial condition on saddle plane
at (c1, c2) = (+10−6, 0)

(b) Initial condition on saddle plane
at (c1, c2) = (−10−6, 0)

Figure 6: Relation between the maneuver magnitude and the jump on the saddle plane.
Left: Projection of delta-v maneuvers on the saddle plane. Right: delta-v magnitude as a function of
the α = arctan(∆vy/∆vx).

propulsion, i.e. what is the minimum cone angle for thrust directions that allows local controllability
after one orbital period.
To find out the minimum requirement, we apply the two different approaches described in section
4 and 5 on the given periodical Halo orbit. The initial data of the orbit is x0 = (1.0083, 5.15 ×
10−19, 0.0010, 1.3714× 10−16, 0.0102,−4.1015× 10−17) in AU according to the Sun-centered refer-
ence frame.

Figure 7: Halo orbit used for the simulation. Size of the Sun is schematical.

6.1 Minimum Cone angle using convex optimization

The results given by Fig. 8 show that the minimum thrust cone angle αmin = 43 deg exists, and is a
necessary requirement for local controllability of a station-keeping satellite using low-thrust or small
chemical impulsions. The results mean that a satellite with thrust directions limited by a cone of

ESA GNC-ICATT 2023 – Author initial and family name 11



0 20 40 60 80

0

 = 43

Figure 8: Solution of Problems (8) (black curve) and (9) (red dot).

less than 43 degrees is not capable of moving anywhere around the neighborhood of an intial position
after one orbital period. Moreover, it indicates that there exists a half-space of the initial configuration
neighborhood which includes all forbidden directions. For example, the satellite might not be capable
of raising its velocity in y-direction, or decreasing its z-position after one orbital period, therefore it
is not locally controllable in one orbital period. It might be possible that global controllability still
holds, in other words that the satellite has to move away from the initial orbit to perform the necessary
maneuver and then to come back. Nevertheless, it would require an important amount of propellant
or it is probably not feasible by the low-thrust engines.

6.2 Minimum Cone angle using the Floque Modes

Let us consider that the thrust vector u parameterized by the cone angle α and the clock angle δ,
having u = (0, 0, 0, cos θ, sin θ cosψ, sin θ sinψ). Where we constraint the thrust vector to ux > 0,
i.e. α ∈ [0, 90]◦ and δ ∈ [−180, 180]◦. Figure 9 shows the projection of u in the RLP reference frame
(top) and on the saddle plane (bottom). The color-code in the plots is used to identify vectors with the
same cone angle (left) and the same clock angle (right). Notice that most of the thrust directions in
the saddle plane have c1 > 0, having a limited set of thrust directions that ensure jumps in the saddle
plane in the direction toward the Sun. As we can see, if the cone angle is close to 50 deg (light green
arrows), the projection on the saddle plane is close to (0,−1) which would not allow to cancel the
unstable component of the trajectory.
Notice that the saddle projection of the thrust vector u will vary as the spacecraft moves along the
periodic orbit, as the stable and unstable directions vary over one orbital period. In order to determine
the minimum cone angle that enables controllability, one must compute for different points along the
orbit, the delta-v vector that is projected into (0,±1) on saddle plane, and its corresponding cone
angle. Figure 10 show the variation over one orbital period of this minimum cone angle, where we
can see that the minimum value corresponds to 44 deg.
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Figure 9: Projections of the thrust vectors u = (0, 0, 0, cosα, sinα cos δ, sinα sin δ) as a function
of pitch angle α and clock angle δ. Top: projection of the velocity components on the RLP frame.
Bottom: projection of u on the saddle plane e1, e2. Left: color code groups same pitch angles. Right
color code groups same clock angles.

Figure 10: Variation of the cone angle of the thrust vectors u = (0, 0, 0, dvx, dvy, dvz) whose projec-
tion on the saddle plane is (0,1).

7 CONCLUSION

In this paper we propose a methodology to find the minimum requirement for station-keeping of the
satellites with cone-constrained thrust. Our analysis is inspired by the James Webb Space Telescope,
which has to maintain the imposed attitude towards the Sun because of the solar shield protecting
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its instruments. We formulate a convex optimization problem giving a solution in terms of a mini-
mum cone angle of the thrust directions allowing local controllability. In other words, the minimum
condition is a necessary condition for the satellite to be capable of moving anywhere to maintain its
position on the orbit. The proposed methodology consists in finding a forbidden half-space in the
neighborhood of the initial configuration of the satellite on the Poincaré map where it cannot move
after one orbital period. The optimization problem is solved using convex programming and theory
of positive bivariate trigonometric polynomials.
We also compare the methodology with Floque modes approach, where the projection of a thrust
direction on the saddle plane allows to evaluate station-keeping maneuvers. The obtained results are
very close, but a small gap exists. More analysis should be done to better understand this difference.
The minimum requirement that we propose can be used for a design of space missions around any
periodic orbit for satellites that have specific constraints on the thrust directions. It can be applied to
a low-thrust satellite or even those with chemical propulsion under condition of using small impulses,
so that the linearization of the dynamics holds.
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