Dual-frequency airborne radar measurement for potential estimates of snow depths

2021 DUAL-CRYO | Workshop on Dual-Band Altimetry of the Cryosphere

H. Skourup, S. M. Hvidegaard, A. Di Bella, M. L. Kristensen, R. Forsberg, A. Coccia, V. Helm, R. Tilling, T. Casal, and M. W. Davidson

DTU Space National Space Institute

NW-track: March 27 • ESA CryoVEx (ALS, ASIRAS, KAREN) April 11-18 In Situ measurements April 12 CS2 orbit # 37159 NASA OIB (ATM, snow depth) April 13 ESA CryoVEx (ALS, KAREN) **NE-track:** March 24 • CS2 orbit # 36892 ESA CryoVEx (ALS, ASIRAS, KARE N) • AWI Polar-5 (EM sounder)

- NASA OIB (ATM, snow depth radar)
- NASA JPL GLISTIN

(Topographic interferometer (ka)) April 16

• ESA CryoVEx (ALS, KAREN)

DTU

Ħ

CryoVEx ANT 2017/18 **ALS-ASIRAS difference** Snow depths m - 0.4 0.4 **GPR IS5** 70°S dist. - 0.3 0.3 0.2 75°S - 0.2 0.1 - 0.1 80°S 70°W 60°W 50°W 40°W 30°W 20°W 0.0 Snow depth (cm) Mean std -0.1ALS - ASIRAS[80%] 15.8 8.2

KAREN[50%] - ASIRAS[80%]

DTU

9.9

10.2

Meters

CryoVEx ANT 2017/18 - GPR

Undisturbed snow surface Me		Metal Plate on snow surface	Metal Plate on ice surface	Undisturbed ice surface	Metal Plate on ice surface
	Snow				
	Ice				

Ground penetrating radar (GPR) works in the microwave band (UHF/VHF frequencies). It is a non-destructive method that uses high frequency polarized waves. During this expedition frequencies between 2-18 GHz were used. By courtesy R. Tilling

Compares the GPR return signal from the undisturbed surface, in 4 different locations. The mean peak to peak distance is $12.25 \pm 1.49 \ cm$ By courtesy: Søren Sandbæk Bendtsen, 2021

Conclusions

- Retracking needs further investigation
 - Regional dependency
 - Surface roughness
- Can and should be further constrained/validated by in situ measurements
- Link to satellites here especially Antarctica lacks accessible processed sea ice freeboards from satellites
- Link satellite footprint to airborne and in situ measurements
- Utilization of cryo2ice
- Design future campaigns

0.0

0.0

0.5

DTU

DUAL-CRYO, 13-14 January 2021

0.5

0.0

0.0

1.5

Airborne sensors vs CS2 freeboards Averaging airborne data over CS2 SAR footprint (300mx1600m)

Footprints airborne vs satellites

뿡

0.0

0.0

0.5

1.5

Footprints airborne vs satellites

esa

DTU

Footprints airborne vs satellites

CryoVal Sea Ice

DTU

1.5

1.0

0.5

RAS Fn

Airbor

Averaging airborne

u,s,rms: 0.10,0.22,0.24

R= 0.143

N= 369