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ABSTRACT

The present work discusses a solution for the High-Altitude Guidance (HAG) problem for reusable
rockets. Two of the main concerns associated with it are assessed in this work: managing uncer-
tainties while minimizing the expense of fuel and computing onboard a trajectory that the con-
troller can track. Successive convexifications (SCvxs) are widely employed for both purposes.
The first problem is addressed offline; uncertainties on the initial mission conditions are optimally
handled through the offline generation of a lookup table scheduling ignition height and attitude
for the start of the powered phase. A SCvx-based algorithm generates guesses for an indirect
shooting, which ultimately solves the FO reentry problem; the scheme employed to generate the
lookup table is hence dubbed Hybrid. The second problem is addressed by solving online, at
the height evaluated with the LUT, a nonlinear formulation of the FO reentry problem with an
algorithm entirely based on SCvxs. Such scheme integrates with a zero-order hold scheme the
translational dynamics, the pitch and yaw kinematics and the thrust magnitude dynamics, hence
it is referred to as Augmented Quasi-5DoF. The two techniques are combined on the benchmark
of the high-lift launch vehicle RETALT1 (RETro propulsion Assisted Landing Technologies -
Two-Stage-To-Orbit vehicle) and tested in a high-fidelity simulator including a real controller and
accurate gravity and atmospheric models.

1 INTRODUCTION

The last decade witnessed the major boost in space services since the beginning of space commercial
activities. Development of reusable launchers has played a fundamental role in such advancement:
cuts in refurbishment costs have indeed positively impacted on the financial needs to access stable
operational orbits. In this context, the EU and ESA have made increasing efforts to achieve the goal
of making launcher reusability the state of the art in Europe. One such effort is RETALT (RETro
Propulsion-Assisted Landing Technologies), a Horizon 2020 project that allowed to increase the TRL
of key technologies that will enable retro propulsion-assisted launcher reusability in Europe [1]. In
particular, one of the enabling technologies for launchers’ recovery through vertical landing is indeed
autonomous GNC: a GNC solution was developed and brought to TRL3 in RETALT, concerning both
the Navigation and the Guidance & Control (G&C) area. With respect to the latter, it was opted for
guiding the rocket using exact deterministic models, and for controlling it with disturbance-tolerant
control laws [2]. As a consequence, convex optimization leveraging reduced-accuracy models [3] was
chosen to deal with pinpoint landing conditions while ensuring optimization convergence [4];H∞ was
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instead used to synthesize structured controllers capable of rejecting environmental uncertainties and
tracking the reference prescribed by the optimization-based guidance [2]. Such approaches, which
offer robustness per se, may however get weaker when interacting in the complete G&C block. The
present work, therefore, constitutes a step towards a more harmonised G&C; the proposed solutions
are applied to the re-entry burn problem for RETALT1: it constitutes a valid case study, as dispersions
in conditions at Main-Engine Cut Off (MECO), i.e. stage separation, are not corrected prior to the
re-entry burn; as burn occurs approsimately 250 s after stage separation, dispersions heavily stress the
G&C robustness.
For what concerns harmonisation of Guidance and Control logics, a first issue arises if the reference
prescribed by the guidance requires action beyond the real control actuation limits. This problem
may arise due to mismatch either between the plant modelled in the guidance and the real one, or
between the nominal and the off nominal operating conditions of the vehicle. Different approaches
have been suggested in literature to overcome this problem. A first, the most radical one, fuses the
Guidance and Control functions in a single G&C block: in this fashion, Learning techniques offer
time-cheap mapping from state to action [5], [6]; a different formulation of the optimization problem,
dubbed Desensitized Optimal Control, allows instead to estimate the control gains every time the
guidance provides a reference trajectory [7], [8]. Deterministic convex guidance schemes, making up
a second approach, insist instead on the mantra ’Model a plant as accurately as possible, as long as
its dynamics can be convexified’; they retain the Control as separated from the Guidance, and have
been applied to landing problems in different environments [9]–[13]. A last third approach treats the
Stochastic Optimal Control problem [14], with successive convexifications as candidate scheme for
solving it onboard [15]. In this work the second research line is followed: the Fuel-Optimal (FO)
powered re-entry problem of RETALT is transcribed with an Augmented Quasi-5DoF (AQ5DoF)
scheme, i.e. a scheme integrating translational dynamics, pitch and yaw angles kinematics and thrust
magnitude dynamics. This open final time problem is treated with Successive convexifications [16]:
computational time requirements are hence met without sacrificing convergence insurance. With
respect to similar suggested solutions [9], the roll angle is ignored, as the thrust force is the dominant
contribution and is singular with respect to roll command in first approximation. In addition, we
propose a zero-order hold (ZOH) for integrating the system as it constitutes a valid trade-off between
accuracy and computational time [17].
A second important bottleneck appears if changes in guidance modes are scheduled with fixed posi-
tion, e.g. triggering a landing burn when a certain fixed height is reached; the guidance may not be
able to generate a feasible trajectory at all. Indeed, when deviations from nominal Initial Conditions
(ICs) are too high, control authority modelled in the guidance scheme may not suffice to ’close’ the
trajectory at the prescribed target. It is possible to impose the final conditions as soft constraints,
thus formulating the Optimal Control Problem as the problem of minimizing deviations from target
[18]; such solution, however, does not provide an a-priori evaluation of the final deviation. A few
algorithms, instead, schedule online the guidance mode change, thus granting feasibility while fur-
ther improving fuel consumption [10], [19]. An adaptive ignition-height scheme is suggested in this
work. Rather than optimizing ignition height online, a Lookup Table (LUT) based on the most criti-
cal uncertainties at MECO ICs is compiled offline. Such LUT allows to schedule both ignition height
and attitude: ignition height is fundamental not only to grant feasibility, but to minimize as well fuel
consumption; at ignition, instead, a correct initial orientation of the rocket is of utmost importance to
allow the controller to track the prescribed trajectory. A Hybrid convex-indirect scheme is employed
to compile the LUT [20]: it is based on an indirect shooting [21] warm-started with a pseudospectral
convex algorithm [22]. An analytical Covector Mapping Theorem grants the accuracy of the warm
starting [23].
The present paper is organized as follows. Sec. 2 provides an overview of the employed offline and
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online guidance schemes; justifications on the main choices concerning both of them are provided as
well. In Sec. 3 the offline ignition scheduling approach is deepened: Sec. 3.1 describes the employed
optimal control formulation, Sec. 3.2 provides an overview of the convex-indirect hybrid algorithm
used to solve it whereas Sec. 3.3 outlines the ignition scheduling strategy. Contents in Sec. 4 follow
a similar structure as for the previous section: Sec. 4.1 describes the non-convex AQ5DoF powered
descent problem while the online successive convexification-based algorithm is described in Sec. 4.2.
The guidance algorithms are tested within a high-fidelity simulator, with a controller in the loop.
Relative results are outlined in Sec. 5: firstly, a Monte-Carlo analysis validates the proposed offline
scheduling method; in second instance the proposed quasi 5-DoF scheme is tested for nominal MECO
conditions. Conclusions and future development directions are presented in Sec. 6.

2 TRAJECTORY PLANNING OVERVIEW

The present work is focused on the High-Altitude Guidance (HAG) of a reusable rocket. HAG in-
volves the reentry burn: it allows to target the initial state of the aerodynamic descent exactly (ignor-
ing for simplicity the navigation errors), whilst tackling existing dispersions at Main-Engine Cut Off
(MECO). The G&C strategy is depicted in Fig. 1; the guidance problem is formulated in the East-
North-Up (ENU) topocentric reference frame, centered on the landing barge, and referred to as x-y-z
in Fig. 1. First phase, i.e. the flip over, is used to bring thrusters upwind, preparing for the reentry
burn; the second phase is a pure ballistic flight during which attitude is controlled and kept constant,
while the third effectively consists of the reentry burn. With reference to Fig. 1, let us focus at first

RETALT

R
E
T
A
L
T

R
E
T
A
L
T

R E T A L T

x 

y

z

xb 

ybzb

xb 

yb

zb

Scheduled:
Ignition height

Scheduled:
Final attitude

Landingbarge

1. MECO 
    Start Flip over 

2. End Flip over

3. Start reentry burn

4. End reentry burn
    Start aerodynamic descent 

Figure 1: Overview of the High-Altitude Guidance strategy - Not to scale

on the red trajectory arc, the powered reentry phase. Dispersions at MECO conditions determine
the real trajectory to severely deviate from the nominal one. As a consequence, controllability may
be achieved as long as guidance is performed in closed-loop fashion; convex optimization algorithms
provide a valid and applied tool to solve this problem [24], [25] while allowing, up to a certain degree,
to minimize expended fuel. A first design choice, therefore, consists of employing convex algorithms
to generate a reference trajectory for the reentry burn. A nearly 5-DoF guidance algorithm based on
successive convexifications of the original non-convex problem is employed for this purpose: nearly
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5-DoF guidance allows to directly include attitude rates limitations in the trajectory planning, while
successive convexifications offer a versatile approach for treating non-convex constraints with convex
solvers.
Still referring to Fig. 1, the focus shall be now moved to quantities referred to as Scheduled: given a
discrete number of MECO conditions, the scheduled quantities are optimized offline; a Lookup Table
(LUT) built on such computed values is then used by the on-board software. Need for such schedul-
ing is now outlined. Let us consider nominal MECO conditions; in this case, a certain ignition height
hign,0 optimizes fuel consumption during the reentry burn. However, for different dispersed MECO
conditions, as ground speed magnitude vM or heading χM, a feasible powered trajectory triggered at
hign,0 may not exist at all. Picture in Fig. 2 depicts how this problem affects the case study of RE-
TALT, for fixed ignition height h̄ign,0 = 75 km. Trajectory in black is the nominal one; the others are

x 

y

z

Landingbarge

R E T A L T

hign = 75 km

Figure 2: Nominal trajectory, feasible and unfeasible dispersed trajectories - Respectively in black, green and
red - for dispersed MECO ground speed and heading and for fixed ignition height reentry burn - Not to scale

associated with dispersions in vM or χM: dispersed vM determines errors in the downrange direction,
dispersed χM induce crossrange errors. Trajectory colors indicate whether a reentry burn arc (in bold
in Fig. 2) triggered at h̄ign,0 allows or not to target the initial conditions of the aerodynamic descent;
respectively green indicate feasible trajectories, red an unfeasible one. The considered deviations are
with 3σ uncertainty. Adapting ignition height to MECO conditions is therefore evident: we opt for
scheduling ignition height for ±3σ in vM only, in χM only and in the combined cases. Scheduled
heights grant feasibility while minimizing fuel consumption during reentry burn. In addition, the
optimal attitude required by the guidance scheme at the beginning of the reentry burn ea∗

0 changes
sensitively depending on MECO conditions. In the same fashion as for ignition height, ea∗

0 is there-
fore evaluated for fixed number of MECO conditions; flip-over maneuver, therefore, targets ea∗

0 as
final attitude, which is maintained constant during the ballistic arc, i.e. up to the scheduled hign,0.

3 IGNITION OFFLINE SCHEDULING

3.1 3-DoF Fuel-Optimal descent problem formulation

Hereinafter the following notation is employed, if not differently specified: boldface italic letters and
their lightface counterpart respectively denote vectors in R3 and their Euclidean norm; vectors are
intended as column vector, independently on their dimensions. Lightface italic letters indicate as well
scalar parameters.
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The offline scheduling algorithm solves the 3-DoF free final time FO powered pinpoint re-entry prob-
lem. Let the state x ∈ R7 gather the position r, speed v expressed in the landing-site centered
East-North-Up (ENU) reference frame and mass m according to x

.
= [rT,vT,m]T. In addition, let uT

and iT respectively denote the normalized thrust and its direction. The Fuel-Optimal pinpoint reentry
problem reads as in Eq. (1)

min
uT ,iT ,tf

J s.t.



ẋ = f
(
x, uT , iT

)
x0 = x̄0

rf = r̄f
vf = v̄f
uT,min ≤ uT ≤ uT,max

iT = 1

(1)

where f ∈ R7 represents the flat-Earth constant gravity 3-DoF powered-rocket dynamics and J
defines the thrust-acceleration integral along the burning arc. The pure control path constraint uT,min ≤
uT ≤ uT,max is associated with engine throttling limits, while iT = 1 stems from definition of iT as
unit vector.
Strictly speaking, problem in Eq. (1) does correspond to the Acceleration-Optimal formulation of
the pinpoint reentry problem. Nonetheless, use of variational mathematics allows to demonstrate the
optimal control profile solving Eq. (1) coincides with the Fuel-Optimal thrust profile [26].

3.2 Hybrid convex-indirect algorithm

Problem in Eq. (1) can be solved quickly and accurately, provided that 1) an accurate optimization
algorithm is used and 2) such algorithm is started with an accurate guess. With respect to these, a
hybrid approach is employed [20]: use of a state-of-the-art indirect single shooting solves issue 1),
and warm starting it with a convexified version of Eq. (1) solves issue 2). Loosely speaking, a convex
pseudospectral (PS) collocation provides an estimation of the costates solving the indirect shooting.
Effectiveness of the warm starting is guaranteed by an analytical Covector Mapping Theorem [27]
that characterizes the Radau-Pseudospectral method [23] underlying the pseudospectral convex col-
location [22]. In addition, the convex collocation employs a free final time formulation to further
grant robustness to the warm starting. The pipeline of the complete hybrid algorithm is reported in
Fig. 3. For length limitations, however, the present subsection has been compressed; the interested
reader is suggested to consult the original contribution in which such algorithm has been proposed
[20].

3.2.1 Pseudospectral free final time convex collocation

Transcribing problem in Eq. (1) to the mentioned free-final-time convex formulation requires three
steps; the solved Pseudospectral free final time convex collocation problem is outlined in the third
bullet point.

1. Convex relaxation [26]: Such step introduces linear dynamics fcvx ∈ R7 and a linear objective
function Jcvx via the change of variables in Eq. (2).

u
.
= uT

Tmax

m
iT , σ

.
= uT

Tmax

m
, m̃

.
= log(m) (2)

The obtained dynamics Right-Hand Side fcvx
(
xcvx,u, σ

)
, where xcvx

.
= [rT,vT, m̃]T, is linear

in the states and controls, as well as Jcvx.
The non-convex equality constraint iT = 1 in Eq. (1) is then relaxed to its convex counterpart,
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Figure 3: Hybrid convex-indirect algorithm employed to generate the Lookup Table for ignition height

obtaining constraints that can be treated with off-the-shelf Second Order Conic (SOC) solvers
[28].

Eq. (1) is therefore turned into Eq. (3).

min
u,σ,tf

Jcvx s.t.


ẋcvx = fcvx

(
xcvx,u, σ

)
Relaxed iT = 1
xcvx,0 = x̄cvx,0

rf = r̄f
vf = v̄f

(3)

2. Pseudospectral hp transcription: Problem in Eq. (3) is then transcribed according to a Legendre-
Gauss-Radau (LGR) scheme. This allows to transform the non-convex expression ẋcvx to its
convex pseudospectral approximation, by introducing the pseudospectral differential operator
D ∈ Rn×(n+1), given that n + 1 defines the number of discretization points the subdomains,
called segments, are subdivided in. For equal segments and fixed time t̄f, Jcvx is instead tran-
scribed according to Eq. (4), where p defines the number of segments and wi the pseudospectral
integration weights.

J hp
cvx

.
=

t̄f
2 p

p∑
j=1

n∑
i=0

wiσ
j
i (4)
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Problem obtained in such manner can be solved in one iteration, for fixed final time. The
interested reader is referred to [22] for further mathematical details.

3. Successive convexifications of non-convex free final time contributions: Last step consists in
restoring t̄f as optimization variable. This is done by iteratively linearizing with respect to tf
the constraints and J hp

cvx in Eq. (4) and solving the corresponding problem. The procedure is
repeated up to convergence of the final time.
More specifically, as Xj

cvx,i and U j
i define states and controls at ith node of j th segment, at the

(k + 1)th iteration the dynamics constraints read as in Eq. (5) and the objective function as in
Eq. (6). The terms with superscript (·)(k) are the solution of the previous iteration, therefore
Eq. (5) and Eq. (6) are linear with respect to both states, controls and tf.

2 p

tf(k)
DiX

j
cvx = fcvx

(
Xj

cvx,i,U
j
i

)
+

2

(tf(k))2
DiX

(k)
cvx

(
tf − t

(k)
f

)
with

i = 0, . . . , n− 1
j = 1, . . . , p

(5)

J hp
cvx =

t
(k)
f

2 p

p∑
j=1

n∑
i=0

wiσ
j
i +

1

2 p

p∑
j=1

n∑
i=0

wiσ
(k),j
i

(
tf − t

(k)
f

)
(6)

3.2.2 Costates extraction

Once the convex pseudospectral problem is solved, the Lagrange multipliers of dynamics constraints
at the initial time Λ1

0 ∈ R7 are isolated and mapped to the corresponding costates λ̃0 ∈ R7 according
to Eq. (7) [23], where λ̃0 gathers the initial coposition λr,0, cospeed λv,0 and logarithmic comass λm̃,0
according to λ̃0

.
= [λT

r,0,λ
T
v,0, λm̃,0]

T. λm̃,0 is then mapped to λm,0 using the derivation proposed in
[29].

λ̃0 =
Λ1

0

w1

(7)

3.2.3 Indirect single shooting

It is possible to solve Eq. (1) finding the control profile and tf satisfying its first-order optimality
necessary conditions [30]. The associated problem is outlined in Eq. (8) and solved by the indirect
single shooting. Indeed, by employing Pontryagin’s Minimum Principle (PMP) [31], the initial OCP
is firstly transformed into a Two-Point Boundary Value Problem (TPBVP) [32]; this TPBVP is then
recast as the Initial Value Problem outlined in Eq. (8).

Find [λT
0 , tf]

T s.t. y(t) satisfies Ξ = 0, given Ξ (λ0, tf)
.
=


r (λ0, tf)− r̄f
v (λ0, tf)− v̄f
λm (λ0, tf)
H (λ0, tf)

 ∈ R8 (8)

where the Hamiltonian H is evaluated for the optimal control profile u∗T computed through the PMP
[31]. y ∈ R14 gathers instead the primal-dual states according to y

.
= [xT,λT]T. The essence of the

indirect shooting lies in solving iteratively problem in Eq. (8) by first propagating the guessed λ0 and
tf with the dynamics in defined by optimal controls u∗T and i∗T [33], then by correcting these guesses
nulling the resulting constraints violation (i.e. constraints in Eq. (8)).

1. Correction step: For correction purposes, constraints are approximated with a first-order dif-
ferential expression based on their analytical Jacobian J[λ0,tf]Ξ ∈ R8×8; the solution λ0 and tf
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at each step km is found by solving Eq. (9), where λkm0 and tfkm are the guesses at the corre-
sponding iteration. Notice Ξ

(
λkm0 , tf

km
)

is computed propagating the guessed costates λkm0 up
to guessed final time tfkm .

Ξ (λ0, tf) ≈ Ξ
(
λkm0 , tf

km
)
+ Jkm[λ0,tf]

Ξ

[
λ0 − λkm0
tf − tf

km

]
= 0 (9)

Constraints’ Jacobian Jkm[λ0,tf]
Ξ is defined using the State Transition Matrix (STM) Φ ∈ R14×14.

Jkm[λ0,tf]
Ξ has been defined analytically in [20], while details on the STM can be found in [33].

2. Propagation step: As consequence of how constraints have been approximated, the propagation
step deals with an augmented dynamics involving both the primal-dual states and the STM.
Since discontinuities in the control profile [34] imply discontuities in the primal-dual dynamics,
jumps in the STM components are evaluated at every bang of the control according to [33].

3.3 Lookup table generation

Machinery described in Sec. 3.2 solves a fixed-initial height problem; however, as an optimal height
is pursued, the FO descent problem is solved for different h0 values. The algorithm in Fig. 3 is run
once for a high value of h0 to grant finding a feasible solution. A sequence of indirect shootings
obtained for decreasing h0 values is then triggered; with reference to Fig. 4, each line represents one
such sequence. Each subproblem of the sequence obtained for varying h0 has its guess initialized
with the solution of the previous subproblem. h0 is decreased up to when infeasibility is detected;
the optimal height h∗0 is then extracted. An example of the procedure is outlined in Fig. 4: on y-axis
is reported the ignition height, on the x-axis the fuel consumption of the corresponding re-entry burn
arc. Each line corresponds to a specific initial condition at cutoff. Fixing χM to its nominal value of
94.64°, vM varies in Fig. 4 between the nominal of 2217 m s-1 and the +2σ = 50 m s-1 dispersion:
feasibility lower limits vary of 20 km approximately. In case of +2σ of vM , igniting at the optimal
height of the nominal case would therefore be infeasible.
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Figure 4: Mass burnt during re-entry burn as function of ignition height, fixed nominal MECO heading and
nominal speed dispersed in range [0,+2σ]
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Hypothesizing the rocket body as aligned with rocket thrust, attitude at ignition is further extracted.
Indeed, the Flip Over targets by design the initial attitude required for the reentry burn by the online-
running algorithm; as a consequence, an estimate of such attitude shall be available to the onboard
computer. Scheduling attitude as function of MECO conditions is compulsory, as attitude proves
sensitive to errors both in downrange and crossrange directions.
At last, it is worth adding a last building block: landing the rocket is the ultimate goal, and this
is achievable as long as control is granted along all reentry flight phases. In this context, limiting
the angle of attack α during the reentry guidance proves useful as it allows to implicitly limit the
disturbance from aerodynamic forces. Specifically, a limitation as in Fig. 5 allows to selectively
constrain flight at lower heights, where aerodynamic disturbances are more intense. Trajectory in

Figure 5: α limitation along re-entry arc

Fig. 5 corresponds to nominal χM and +2σ in vM . Constraining α influences the initial attitude of
the reentry burn: the optimal solution for each couple of dispersed vM , χM is further processed with a
convex solver implementing the angle of attack constraint, and the attitude Lookup Table run onboard
is compiled with such last data.

4 ONLINE GUIDANCE STRATEGY

4.1 Augmented Quasi 5-DoF Fuel-Optimal descent problem formulation

The online scheduling algorithm solves the Augmented Quasi 5-DoF free final time FO powered pin-
point re-entry problem, as defined in Eq. (10). Let the state x̃ ∈ R10 gather r, v, m, thrust yaw and
pitch angles ψ and θ, and the thrust magnitude T according to x̃

.
= [rT,vT,m, ψ, θ, T ]T. iT is there-

fore computed employing a standard 3-2-1 sequence of rotations. In addition, let the control vector ũ
gather the commanded yaw rate rψ, pitch rate rθ and thrust rate rT according to ũ .

= [rψ, rθ, rT ]T.
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The AQ5DoF Fuel-Optimal pinpoint reentry problem is outlined in Eq. (10).

min
ũ,T0,Tf ,tf

J̃ s.t.



˙̃x = f̃
(
x̃, ũ

)
r0 = r̄0, v0 = v̄0, m0 = m̄0, ψ0 = ψ̄0, θ0 = θ̄0
rf = r̄f , vf = v̄f , ψf = ψ̄f , θf = θ̄f
Tmin ≤ T ≤ Tmax

|rψ| ≤ rψ,max, |rθ| ≤ rθ,max, |rT | ≤ rT,max

|ṙψ| ≤ ṙψ,max, |ṙθ| ≤ ṙθ,max

α (v, ψ, θ) ≤ αmax (rz)

(10)

where f̃ ∈ R10 represents the flat-Earth AQ5DoF powered-rocket dynamics, according to Eq. (11)

f̃
(
x̃, ũ

) .
=


v

a (m,ψ, θ, T )

−β̃ T
rψ
rθ
rT

 where
a
.
=
T

m
iT (ψ, θ) + g

β̃
.
=

1

Ispg0

(11)

and J̃ defines the thrust magnitude integral along the burning arc as reported in Eq. (12).

J̃ .
=

∫ tf

0

Tdt (12)

With reference to Eq. (10), couples ψ̄0 and θ̄0, and ψ̄f and θ̄f are respectively retrieved from the real
attitude and from the condition αf = 180◦. Limits associated with |ṙψ| and |ṙθ| provide surrogate lim-
itations on attitude dynamics; moreover, dependency of maximum angle of attack on height mirrors
the structure outlined in Fig. 5.

4.2 Online trajectory planning algorithm

It is opted for employing successive convexifications to solve problem in Eq. (10). The dynamics
are integrated through a ZOH approximation, both on states and controls; continuous-time dynamics
are hence converted to their corresponding discrete-time counterpart; dynamics reads as in Eq. (13)
for evenly-distributed discretization points; ultimately, an even distribution is chosen, as deemed
sufficient to grasp dynamics accurately.

x̃i+1 = x̃i + Fi (x̃, ũ, tf) where i = 1, . . . , ni − 1 (13)

and ni indicates the number of discretization points, the subscript (·)i denotes the quantity in (·)
evaluated at ith discretization point and Fi (x̃, ũ, tf) defines the ZOH approximation of the dynamics
in Eq. (11).
The obtained discrete-time optimal control problem is highly nonlinear, whilst convexification applied
to equality constraints requires successive linearizations: problems of artificial unboundedness, due
to successive linearizations, and artificial infeasibility, due to mismatch between the real nonlinear
and the numerical linear dynamics, are prone to arise [16]. To overcome them, it is opted for using
respectively soft trust regions and virtual controls.
Trust regions limit the variation of optimization variables between the generic kth iteration and the
following one; in case of soft trust regions, this is achieved by penalizing these variations in the
objective function through a slack variable sξ; tf is the only variable treated with a hard constant trust
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region, i.e. the variation between successive iterations is limited to a fixed value. Constraints limiting
trust regions through the slack sξ can be solved through SOC solvers.
Virtual controls are slack variables introduced in linearized dynamics and penalized in the objective
function by means of the additional slack sν . Constraints limiting virtual controls through the slack
sν can be solved through SOC solvers as well.
The objective function is therefore augmented as in Eq. (14), exploiting the fixed weights wν , wξ.

J̃aug
.
=

∫ tf

0

Tdt+ wξsξ + wνsν (14)

The online algorithm solves the problem defined in Eq. (10), adding the virtual controls, trust regions,
and linearizing the non-convex contributions iteratively. Domain is evenly discretized, therefore al-
lowing to have segments’ lengths depend on tf only. As an example, the linearized dynamics reads as
in Eq. (15).

x̃i+1 = x̃i + J(k)
x̃i
Fi x̃i + J(k)

ũi
Fi ũi +∇(k)

tf
Fi tf + νi + ci

ci
.
= F

(k)
i − J(k)

x̃i
Fi x̃

(k)
i − J(k)

ũi
Fi ũ

(k)
i −∇(k)

tf
Fi tf

(k)
i = 1, . . . , ni − 1 (15)

where superscript (·)(k) indicates that Jacobians and gradients are evaluated at x̃(k), ũ(k), tf(k). Non-
convex inequality constraints, namely pitch and yaw commands rates limitation and angle of attack
limitation, and the objective function are successively convexified as well, similarly to what done in
Eq. (15).

5 RESULTS

The described offline and online algorithms are applied to the powered re-entry guidance problem.
More specifically, the kinematic quantities are here outlined, whereas the dynamical ones are left non-
dimensional; lower and upper limits on non-dimensional thrust magnitude are respectively uT,min =
0.49 and uT,max = 1. Dispersions at MECO are reported in Tab. 1. Dispersions highlighted in green
are employed to compile the lookup table, therefore are managed by the Guidance function directly.

Table 1: MECO dispersions - In green the ones associated with greater deviations from nominal trajectory

Physical quantity gggNominalggg Standard deviation

Geodetic altitude (km) 93.06 0.8

Ground speed (m · s-1) 2217 25

Flight path angle (◦) 31.77 0.4

Heading angle (◦) 94.64 0.2

5.1 Robustness analysis

With respect to quantities highlighted in Tab. 1, the LUTs are built using the nominal and the dispersed
quantities corresponding to ±3σ. The Lookup Table for pitch angle is reported as example in Tab. 2.
Moreover, to demonstrate the effectiveness of the proposed method, a Monte-Carlo campaign is run,
simulating the full scenario including a high-fidelity dynamical environment with J2-perturbed grav-
ity model, aerodynamics, 6-DoF plant model and controller synthesized using the H∞ technique.
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Table 2: LUT for optimal ignition pitch angle† onboard schedul-
ing

Dispersed vM

gg-3σgg ggNominalgg gg+3σgg

D
is

pe
rs

ed
χ
M

+3σ 71.1◦ 30.2◦ -31.5◦

Nominal 84.7◦ 33.4◦ -32.1◦

-3σ 69.9◦ 29.6◦ -31.2◦

† Expressed with respect to landing-site centered NED reference
frame

The only logic modelled as perfect is the Navigation; however, as it grants high accuracies, it has
been deemed not to sensibly alter the presented results when added. Dispersions employed in the
high-fidelity simulator include, besides initial conditions at MECO, the aerodynamic coefficients, the
atmospheric model and vehicle inertial properties.

The 3-DoF Guidance ultimately employed to refine the attitude lookup tables limiting the angle

(a) Position errors (b) Velocity errors

Figure 6: Monte Carlo campaign - Errors with respect to target

of attack is used in the Monte Carlo campaign; we stress that such Guidance is already potentially
compatible with online computation requirements. Over a batch of 200 MC runs, the trajectory gets
successfully tracked in 199 cases, demonstrating the effectiveness of the proposed lookup table-based
method for scheduling the initial conditions of the re-entry burn. However, the poor modelling of
gravity force and of apparent forces determines a longer time of flight with respect to the one fore-
seen within the guidance block. Therefore, as demonstrated in Fig. 6a and in Fig. 6b, the final error
with respect to target builds during the last seconds of flight. Nonetheless, the error associated with
MECO conditions uncertainty gets handled well, demonstrating the effectiveness of the LUT strategy.
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5.2 Online algorithm performance

The algorithm described in Sec. 4 is applied to the re-entry problem for nominal MECO conditions.
Notice that the pitch attitude profile presented in this section differs numerically from the ones in
Tab. 2, as the guidance algorithm runs on the landing site-centered ENU reference system; however,
the attitudes associated with the NED and ENU parameterizations coincide. Number of successive
convexifications iterations has been limited to 10: inclusion of the angle of attack constraint, indeed,
prevents the algorithm from reaching convergence within its stopping criteria; however, convergence
to a physical solution is achieved, therefore this aspect is deemed of minor importance. Excluding
the angle of attack constraint, on the other hand, algorithm converges in 3 iterations. Final time is
guessed through the convex 3-DoF algorithm; state profiles are guessed as interpolating the prescribed
boundary conditions, whereas control profiles are guessed as null. In addition, the control and control
rates limitations in Eq. (16), Eq. (17) are included in the optimization process.

rψ,max = 5 ◦/s rθ,max = 5 ◦/s rT,max = 0.33 (Tmax − Tmin) N/s (16)
ṙψ,max = 1 ◦/s2 ṙθ,max = 1 ◦/s2 (17)

Results of the convergence process for the yaw and pitch profiles and for the thrust magnitude are re-
ported respectively in Fig. 7 and in Fig. 8. It is possible to appreciate how the thrust profile switches
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(b) Pitch angle

Figure 7: Convergence of thrust angles profiles - Guidance only

in only one iteration from a linear trend to a structure resembling a discontinuous min-max profile.
While yaw profile keeps its linear trend, pitch profile varies in proximity of switches; furthermore,
time trend of the pitch profile is upper bounded by the limit on ṙθ in Eq. (17), as demonstrated by the
approximately piecewise-linear behaviour of rθ, shown in Fig. 9. For what concerns thrust profile, in-
stead, limit on rT outlined in Eq. (16) is active during thrust magnitude build-up and throttling-down;
this makes the resulting thrust profile as close as possible to the theoretical min-max structure [34]
compatibly with the added control limitations.
At last, the solution is tested in the same high-fidelity simulator employed for the Monte Carlo anal-

ysis outlined in the previous subsection. Fig. 11a and Fig. 11b show the evolution through thrusting
time respectively of the position and velocity errors in their phase spaces; the fact the errors remain
bounded and converge approximately to zero for both velocity and position components demonstrates
pragmatically the accuracy of the linearized dynamics treated by the convex solver, besides the con-
vergence of the virtual controls adopted. On the other hand, small residuals on the final errors can
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Figure 8: Convergence of non dimensional thrust magnitude profile - Guidance only
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Figure 9: Convergence of thrust pitch rate profile - Guidance only
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Figure 10: Convergence of non dimensional thrust magnitude rate profile - Guidance only
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be associated with the discrepancy between final time foreseen by the guidance algorithm and real
one, as outlined in Sec. 5.1 as well. It can be indeed noticed that the final time reported on the top of
the colorbars of Fig. 11 differs from the one of the profiles computed in the Guidance block, which
amounts to approximately 41 s, e.g. visible on the x-axis in Fig. 8. The non-null initial errors are asso-
ciated with the fact the guidance solution has been implemented in the simulator in open-loop fashion;
solution of this aspect, stepping to a closed-loop guidance approach, will further allow testing of the
robustness of the proposed AQ5DoF algorithm, as done for the 3DoF one in Sec. 5.1.

(a) Position errors (b) Velocity errors

Figure 11: Evolution of errors with respect to reference trajectory using the Augmented Quasi 5DoF guidance
scheme - High-fidelity simulation

6 CONCLUSIONS AND FUTURE DEVELOPMENTS

A solution for the HAG problem has been proposed in this work, both concerning the re-entry burn
scheduling and the online computation of a reference trajectory for the re-entry burn of the high-lift
vehicle RETALT1. The scheduling via Lookup Table has demonstrated its effectiveness even ac-
counting for a simplified 3-DoF Guidance in the loop; a hybrid method based on a convex-indirect
scheme has been proposed to compile such Lookup Table, providing accurate and fast results; an
angle-of-attack limitation has been further included in the LUT to minimize aerodynamic distur-
bances, through a convex solver. An online scheme for including controller limitations, such as Euler
angles and throttling rates, has been proposed and tested for the nominal solution. The scheme has
demonstrated correct handling of the SCvxs-associated approximations, as the generated trajectory
has been proven to be trackable in a high-fidelity simulation environment.
The first successive step shall include the non linearities associated with gravity in the Guidance
scheme, thus providing better estimations of the time of flight. On the other hand, inclusion of the
angle of attack constraint in the indirect shooting would make the optimality conditions associated
with the ignition height scheduling even more accurate; inclusion of the angle of attack is therefore a
desirable development step. At last, the proposed Augmented Quasi 5DoF guidance scheme shall be
tested with a Monte Carlo campaign to prove its robustness.
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