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“quantum sensing/metrology”, “quantum basic science” 

  

Background 

Optically-pumped magnetometers (OPMs) [1], in which an atomic spin ensemble is optically pumped 

and its spin-dynamics optically detected, are a paradigmatic quantum sensing technology with 

applications ranging from geophysics [2] to medical diagnosis [3] to searches for physics beyond the 

standard model [4]. OPMs are also a useful proving ground to test sensitivity enhancement 

techniques that may someday be applied to atomic clocks, atomic gyroscopes, and atomic co-

magnetometers. In these sensors two quantum systems – atoms and light – interact to produce the 

signal. Understanding and controlling the quantum noise in this interacting system is an outstanding 

challenge. 
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Presentation 

 
 

Figure 1. Squeezed-light Bell-Bloom OPM. a) Experimental schematic. TA-SHG, Tapered Amplified 

Second Harmonic Generator; OPO, Optical Parametric Oscillator; PPKTP, Nonlinear crystal; LO, 

Local Oscillator; PBS, Polarizing BeamSplitter; QWP - Quarter Wave-plate; VC - Vapor Cell; BSt - 

Beam stopper; HWP - Half Wave-Plate; PD - Photodiode; DTIA- Differential Transimpedance 

Amplifier; DAQ - Data Acquisition; FG - Function Generator; NLE - Noise Lock Electronics.“Bell-

Bloom” Inset: Due to the magnetic fieldBxatomic spins precess at the Larmor frequencyωLin the 

transverse plane.Synchronously modulated optical pumping maintains the atomic spin polarization. A 

linearly polarized cw probe undergoes paramagnetic Faraday rotation.“Squeezer” Inset:Vertically-

polarized squeezed vacuum is combined with horizontally-polarized LO on a polarizing beam splitter 

to generate a polarization squeezed probe. b) Power Spectral Density (PSD). Power spectrum of the 

BB signal for coherent and squeezed-light around the Larmor frequency. The spectra are averages of 

100 measurements, each one with duration of 0.5 sec. c) Polarimeter signal under continuously 

modulated optical pumping (left) and free-induction decay (right).  

 

 

Here we study how squeezed-light probing affects the sensitivity spectrum of a high-density quantum-

noise limited OPM with 300 fT/√Hz sensitivity.  In contrast to previous squeezed-light magnetometers, 

based on spin-alignment [5-7], we use a magnetometer architecture based on spin-orientation of the 

atoms and use phase-sensitive detection to extract the magnetometer signal. This approach allows us 

to implement features not found in previous squeezed-light magnetometers: We probe the spin 

orientation of the atomic ensemble via the optical Faraday effect, which is an efficient technique for 

quantum non demolition (QND) measurements, and employ Bell-Bloom (BB) excitation, which allows 

us to work at frequencies of 10s of kHz where detectors and squeezed-light sources can easily be 

shot-noise limited. This simple magnetometer architecture is amenable to off resonant squeezed-light 

probing that can be independently tuned. Polarization squeezing is generated in a subthreshold 

optical parametric oscillator achieving up to 3.2dB of photon shot noise suppression beyond the 

standard quantum limit. [8]. This use of squeezing is compatible with sub-fT methods including high-

density [2], multi-pass [9] and with pulsed gradiometry [10]. The BB technique also gives a clear view 

of the relationships among different noise sources. We show in theory and observe in experiment that 

it is possible to improve the high-frequency sensitivity as well as the signal bandwidth of the OPM 

using squeezed probe light, while also evading measurement back-action noise [11–12]. The results 

provide experimental input to the much-discussed question of whether squeezing techniques can in 

practice improve the performance of atomic sensors. 
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