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Accurate simulation of advanced materials often requires modeling material behavior across multi-
ple spatial scales. A popular modeling strategy consists in defining a suitable higher-scale material
model a priori and calibrating its parameters through homogenization of a limited number of mi-
cromechanical models. However, the lower-scale behavior to be homogenized is often so complex
that defining an accurate pre-calibrated macroscale model becomes essentially impossible. Such sce-
nario motivates the choice for a concurrent multiscale Finite Element (FE2) approach in which the
higher-scale constitutive behavior is directly upscaled from micromodels embedded at each macro-
scopic integration point without loss of generality. Yet, although powerful, concurrent multiscale
models are still not widely applicable due to their extreme computational costs.

In the last few years, several strategies to alleviate the computational requirements of FE2 have
been proposed, many of which consisting in substituting the expensive micromodel computations by
cheap surrogate model approximations. Among these, Feedforward Neural Networks (FNN) [1] and
Recurrent Neural Networks (RNN) [2] have become by far the most popular approach. Neural Net-
work surrogates provide fast predictions and can approximate arbitrarily complex material behavior.
On the other hand, they are purely data-driven models and therefore cannot provide meaningful pre-
dictions for new inputs outside their training spaces. This limitation is especially problematic when
approximating path-dependent materials whose behavior depends on their complete strain history:
in this case, training entails sampling from an essentially infinite-dimensional space of arbitrarily
long strain paths.

With this work, we propose an alternative approach that combines the main strengths from both
machine learning and classical constitutive modeling. We start by defining a physics-based constitu-
tive model at the macroscale, but instead of calibrating it based on a set of lower-scale observations
we introduce additional flexibility by letting its parameters evolve in time. In order to learn this
evolution, we cast the material parameters as latent variables evolving through hidden dynamics
captured by a deep Neural Network. This combination of an FNN encoder and a material model de-
coder results in a hybrid network with physics-based memory (the internal variables of the decoder)
which can be trained with significantly less data than state-of-the-art RNNs. We demonstrate the
capabilities of the proposed approach with an extensive set of numerical tests.
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