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1 Introduction

Over many decades, economists have sought to understand the drivers underlying the time

series evolution of series of interest through the analysis of seasonally adjusted data. The

notion that a series can be meaningfully decomposed into components that are not directly

observed is, therefore, deeply embedded in empirical economic analyses.

An important strand of literature employs so-called unobserved components (UC) mod-

els to study trends and cycles as separate phenomena of economic interest. While conven-

tional UC models assume that the individual components are uncorrelated, a substantial

literature questions this in the context of analyzing trend and cyclical movements in sea-

sonally adjusted data; important contributions include Clark (1989), Morley, Nelson and

Zivot (2003, henceforth MNZ), Morley (2007), Sinclair (2009), Dungey et al. (2013, 2015).

However, the potential consequences of allowing seasonality to be correlated with other

components are much more pervasive because the uncorrelated assumption is implicit in

the widespread use of seasonally adjusted data. Indeed, Wright (2013) argues that conven-

tional seasonal adjustment has distorted the true effects of the Great Recession, while Stock

(2013) points to the difficulties of determining an appropriate seasonal adjustment filter.

From a different perspective, Cecchetti and Kashyap (1996), Krane and Wascher (1999)

and Matas-Mir and Osborn (2004), among others, argue on both economic and statistical

grounds that cyclical and seasonal components may be correlated.

Our approach follows MNZ and others by using a UC framework that takes account

of interactions through correlated innovations, but we extend the framework to explicitly

model seasonality. Further, since multivariate analysis can throw important light on un-

derlying economic phenomena, such as common trends and common cycles (for example,

Morley (2007), Fleischman and Roberts (2011)), we employ a three component multivariate

UC model. Very recently, Hindrayanto, Jacobs, Osborn and Tian (2019, henceforth HJOT)

consider such a trend-cycle-seasonal model in the univariate context and show the imposi-
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tion of a single correlation restriction is sufficient for identification. Building on HJOT, the

present paper focuses on a multivariate model for quarterly data, examining identification

and how this can be achieved through the use of economically plausible restrictions, such as

common trends or common cycles. To our knowledge, no previous analysis has examined

identification conditions for a correlated multivariate UC trend-cycle-seasonal model.

To illustrate the range of models that can result in practice, the framework is applied

to seasonal gender employment in Australia. More specifically, a bivariate male/female

model with a common cycle is preferred to other univariate and bivariate specifications

considered.

The paper proceeds as follows. Section 2 discusses multivariate correlated seasonal UC

models. It is shown that while the general model is not identified, plausible economic

restrictions can allow identification in the presence of non-zero correlations between trend,

cycle and seasonal shocks. Section 3 then illustrates the approach through an application

to gender employment in Australia. The final section concludes.

2 Multivariate UC Models

This section describes the model and discusses its identification, including economically

plausible restrictions that may apply.

2.1 Seasonal UC model

Many macroeconomic variables exhibit trend, cycle and seasonal characteristics. Hence,

for an observed k×1 vector Yt, consider a multivariate UC model that explicitly recognizes

these characteristics through the measurement equation

Yt = Tt +Ct + St, (1)
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in which the trend, cycle and seasonal components (Tt, Ct and St, respectively) are, in

general, each k × 1 vectors.

Following MNZ and many others, we assume that the trend for each variable is I(1)

and can be represented as a random walk with drift, so that

Tt = Tt−1 + β + ηt, (2)

where ηt = (η1t, . . . , ηkt)
′, β = (β1, . . . , βk) and the k× k covariance matrix E[ηtη

′
t] = Σηη

is not a priori assumed to be diagonal. The multivariate cyclical component of (1) is

represented by the AR processes

Φ(L)Ct = εt, (3)

where Φ(L) is a k × k matrix in the lag operator L, with Φ(L) = Ik −Φ1L− . . .−ΦpLP

(Ik being a k × k identity matrix) having all roots strictly outside the unit circle and,

with εt defined in the obvious way, E[εtε
′
t] = Σεε. As usual in economic applications of

multivariate UC models, such as Morley (2007), Sinclair (2009) or Ma and Wohar (2013),

Φ(L) is assumed diagonal with the cycle in each variable having the same univariate order

p. Empirical analyses typically employ p = 2, since this can both adequately capture

short-term nonseasonal movements in economic data while also allowing the parameters of

the correlated UC trend-cycle model to be identified; see MNZ for the univariate case and

Trenkler and Weber (2016), hereafter TW, for a multivariate analysis1.

As in HJOT and many other papers, seasonality is modeled using the so-called “dummy

variable” form

Ψ(L)St = ωt, (4)

where Ψ(L) is the scalar annual summation polynomial over a year (Ψ(L) = 1+L+L2+L3

for quarterly data) and, in an obvious notation, E[ωtω
′
t] = Σωω.

1With seasonal data, it is also important that the cycle component is not conflated with the seasonal
component. A low order, such as p = 2 can be important for this purpose, especially for quarterly data.

3



To facilitate later discussion, stack the UC model disturbances of (2)-(4) to form the

3k × 1 vector Ut as

Ut = [η′t, ε
′
t,ω

′
t]
′, (5)

and define the 3k × 3k covariance matrix

E[UtU
′
t ] = Σ =


Σηη Σηε Σηω

Σ′ηε Σεε Σεω

Σ′ηω Σ′εω Σωω,

 (6)

where, in an obvious notation,

E[ηtε
′
t] = Σηε, E[ηtω

′
t] = Σηω, E[εtω

′
t] = Σεω. (7)

Although the disturbances are possibly cross-correlated at t, they are assumed uncorrelated

over time, so that

E[Ut1U
′
t2

] = 0, t1 6= t2.

2.2 Reduced form

As a preliminary to identification, we consider the reduced form and autocovariances of the

multivariate seasonal UC model for quarterly data2. It is straightforward to see that the

system (1)-(4) implies the reduced form

Φ(L)∆4Yt = Φ(1)Ψ(1)β +Φ(L)Ψ(L)ηt + ∆4εt +Φ(L)∆1ωt, (8)

where ∆4 = 1−L4 is the annual difference and ∆1 is the usual first difference. In this general

model, each element of Yt is seasonally integrated (see, for example, Ghysels and Osborn,

2The expressions in this subsection can be easily generalized to monthly data, but somewhat different
identification issues will arise.
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2001, Chapter 4), due to the presence of a zero frequency unit root in its trend component

(2) and the full set of unit roots at seasonal frequencies through the nonstationary seasonal

process of (4). Hence annual differencing is required to reduce each univariate process in

Yt to stationarity, but this does not rule out cointegration across the components of Yt.

To focus on the disturbances, define from (8)

Zt = A(L)ηt + (1− L4)εt +B(L)ωt

= H(L)Ut, (9)

where

A(L) = (1 + L+ L2 + L3)Φ(L) = Ik +A1L+ ...+Ap+3L
p+3,

B(L) = (1− L)Φ(L) = Ik +B1L+ ...+Bp+1L
p+1, (10)

while Ut is defined in (5) and H(L) is the k × 3k matrix

H(L) ≡
[
A(L) (1− L4)Ik B(L)

]
= H0 +H1L+H2L

2 + ...+HqH
q, (11)

where q = max (p+ 3, 4).

For the specific case of interest in our application, with p = 2 and quarterly data, then

q = 5. Also noting that Φ1, Φ2 are diagonal and hence symmetric, it can easily be seen
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that

H0 =

[
Ik Ik Ik

]
,

H1 =

[
A1 0 B1

]
=

[
(Ik −Φ1) 0 −(Ik +Φ1)

]
,

H2 =

[
A2 0 B2

]
=

[
(Ik −Φ1 −Φ2) 0 (Φ1 −Φ2)

]
,

H3 =

[
A3 0 B3

]
=

[
(Ik −Φ1 −Φ2) 0 Φ2

]
,

H4 =

[
A4 −Ik 0

]
=

[
−(Φ1 +Φ2) −Ik 0

]
,

H5 =

[
A5 0 0

]
=

[
−Φ2 0 0

]
.

Since Φ(L) is of order p and Zt is the sum of moving averages, the reduced form (8) is a

VARMA(p, q) process, with q = p+3 for p > 0. Ruling out the AR and MA polynominals in

each equation i = 1, ..., k having any factor in common3, this VARMA process with diagonal

Φ(L) is identified (Dufour and Pelletier (2021, Theorem 3)). An immediate consequence is

that the AR parameters in Φ(L) are identified from the reduced form. Also, noting that

Ψ(L) is the (known) annual summation operator, the drift parameter vector β is identified

through the reduced form intercept vector.

Therefore, the primary issue for identification (and discussed in the next subsection)

concerns whether the elements of the covariance matrix (6) can be estimated given the

values of Φ(L) and β. For this purpose, we consider the non-zero autocovariance matrices

of Zt, namely

Γ` =

q−`∑
i=0

Hi+`ΣH
′
i ` = 0, 1, ..., q. (12)

Using (6) and (11), (12) then yields the autocovariances of Zt in terms of the elements of

3The AR polynomial φi(L) in the ith equation will cancel in (8) when the corresponding cycle disturbance
has zero variance. However, this implies the absence of a stochastic cycle component in the variable and
hence φi(L) is not identified.
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Σ and Φ(L).

2.3 Covariance matrix identification

Identification proceeds by considering the relationship between the autocovariances of the

moving average component of the reduced form and the covariance matrix (6) of the un-

derlying model. MNZ show that p ≥ 2 is sufficient for the identification of the univariate

trend-cycle model, while TW generalize this result to the multivariate context. The addi-

tion of seasonality complicates identification, with HJOT showing not only that univariate

models of the form (1)-(6) for quarterly data with k = 1 are under-identified for p ≤ 1,

but also that an additional disturbance covariance restriction is required for identification

when p = 2.

Following the line of analysis used by the above authors, the previous subsection has

already noted that Φ(L) and β are identified from the multivariate ARMA reduced form.

Since, from (10) and (11), the only unknowns in the matrices Hi (i = 0, . . . , q) are the

AR coefficients of Φ(L), these are also identified from the reduced form. Therefore, the

autocovariances of Zt defined by (12) can be used to provide information about the 3k(3k+

1)/2 distinct elements of Σ, effectively treating the other parameters as given. The order

condition for identification then requires Γ` of (12) for ` = 0, 1, . . . , q to contain at least

3k(3k + 1)/2 distinct elements.

The q + 1 non-null autocovariance matrices of (12) have qk2 + k(k + 1)/2 distinct

elements, of which k(k + 1)/2 are contributed by the contemporaneous covariance matrix

Γ0. As discussed above, the VMA order q is a consequence of both the data frequency

and cycle order p. For quarterly data and p ≤ 1, q = 4 and hence the number of distinct

autocovariance elements in Γ` for ` = 0, ..., q, namely (9k2 + k)/2, is less than the number

of distinct elements of Σ, (9k2 + 3k)/2. Consequently, as for the univariate case, the

parameters of the quarterly unrestricted correlated multivariate UC model with seasonality
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are not identified when p ≤ 1. We therefore concentrate on the case p = 2, which is of

interest for empirical as well as theoretical reasons.

With p = 2, the number of distinct elements in Γ` of (12) for ` = 0, ..., 5 is 5k2 + k(k +

1)/2. It is easily seen that this can be written as (11k2 + k)/2 = (9k2 + 3k)/2 for k = 1

(the case discussed by HJOT) and (11k2 + k)/2 > (9k2 + 3k)/2 for k > 1. Therefore, the

order condition for identification is satisfied for the correlated UC model for all values of

k. However, the rank condition also needs to be satisfied and HJOT show that this fails in

the univariate case.

Using a similar notation to TW, define γ∗0 = vech(Γ0), where the vech operator colum-

nwise stacks the elements of Γ0 on and below the main diagonal into the k(k+ 1)/2 vector

γ∗0 , starting with the first column of Γ0 and with the elements of each subsequent column

placed below the immediately preceding one. Also define the k2 vectors γi = vec(Γi),

i = 1, . . . , 5, where the conventional vec operator stacks all elements in the columns of the

relevant matrix below each other. The vector γ∗ = [γ∗′0 ,γ
′
1,γ

′
2,γ

′
3,γ

′
4,γ

′
5]
′ then contains the

(11k2 + k)/2 distinct autocovariance elements for Zt at lags ` = 0, . . . , 5. Similarly, define

the vector σ∗ = vech(Σ) containing the (9k2 + 3k)/2 distinct elements of the component

covariance matrix Σ and it is also possible to define a (11k2 + k)/2× (9k2 + 3k)/2 matrix

D whose elements depend only on Φ1 and Φ2 to write the relationships as the system of

equations

γ∗ = Dσ∗, (13)

in which the elements of σ∗ are unknown. Consequently, the rank condition for identifica-

tion of the unrestricted multivariate correlated UC model is that D has rank (9k2 + 3k)/2.

HJOT show that a linear dependence exists between the autocovariances when k =

1 in the correlated seasonal UC model, and hence the rank condition for identification

fails. A single covariance restriction on the component disturbances is then required for

identification. In the multivariate case, although explicit expressions can be obtained for

8



the elements of D, these are substantially more complicated for the seasonal multivariate

model than those presented by TW for the trend-cycle model or HJOT in the univariate

seasonal case.

It is useful to note the dimensions of D for different values of k. In particular, for

k = 2, D is 23× 21, while for k = 3, 4 the dimensions are 51× 45 and 90× 78, respectively.

Practical considerations therefore imply that the approach will be used in small systems.

In the absence of an analytical solution, our proposal is to proceed by first constructing

the matrix D for sets of plausible values of Φ1 and Φ2 (perhaps obtained from a univariate

analysis), and check its rank. If the matrix is rank deficient, as HJOT show in the univariate

case, then restrictions will be required for identification.

The next subsection explores sets of plausible restrictions that may be considered.

2.4 Restricted models

A conventional multivariate UC model, as used by Harvey (1989), among many others,

allows the disturbances for a specific component to be correlated across variables, but

imposes zero correlations across components. With trend, cycle and seasonal components,

the covariance matrix of (6) is then block diagonal, with 6k2 zero restrictions thereby

imposed on the 9k2 elements of Σ. The discussion of the preceding subsection implies that

this uncorrelated multivariate UC specification is over-identified.

Although some previous studies employing UC models (including Morley (2007), Ma

and Wohar (2013), Clark (1989), Fleischman and Roberts (2011) and McElroy (2017))

employ restrictions across variables to improve efficiency of estimation, the inclusion of

seasonality in the correlated UC model is likely to require restrictions for identification.

Rather than making a priori assumption on the appropriate restrictions, the application

of the next section considers a range of models and judges the economic plausibility of the

results ex post.

9



To be specific, for Tt = (τ1t, τ2t, . . . , τkt)
′, Ct = (c1t, c2t, . . . , ckt)

′. St = (s1t, s2t, . . . , skt)
′,

restrictions that may be considered include4:

1. Common trends, which imposes in (2)

τit = diτ1t = diτ1,t−1 + diβ1 + diη1t, i = 2, ..., k,

so that both the deterministic and stochastic trend components of the ith element of

Tt are the same scalar multiple di of τ1t.

2. Common cycles, for which in (3)

cit = bic1t, i = 2, ..., k, (14)

implying that Φ(L) = φ(L)BIk where φ(L) is scalar, B is a diagonal matrix and

εit = biε1t i = 2, ..., k. (15)

3. Common seasonals, with sit = ais1t, for i = 2, ..., k so that

ωit = aiω1t i = 2, ..., k. (16)

4. Perfectly correlated trend shocks, which places no restriction on the drift parameters

but imposes

ηit = diη1t, i = 2, ...k. (17)

5. Perfectly correlated cycle shocks, in which no cross-equation restrictions are placed

on the AR parameters, but the cycle shocks satisfy (15).

4This list is not intended to be exhaustive. For example, with k > 2, cointegration with more than one
common stochastic trend may be appropriate.
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6. Same trend shock, which imposes the additional restriction di = 1 for i = 2, ..., k in

the perfectly correlated trend shock model.

7. Same cycle shock, which imposes the restriction bi = 1 for i = 2, ..., k in the perfectly

correlated cycle shock model.

Of these specifications, models 1, 4 and 6 all imply the existence of a single common

trend and hence k−1 cointegrating relationships between the k series. The common trends

model is used by Morley (2007) and Ma and Wohar (2013), with the perfectly correlated

trend shock specification relaxing the implied restriction across the stochastic and determ-

inistic trends. Clearly, the same trend shock specification restricts the stochastic trends

but not the deterministic trends. The common cycle specification is used by Clark (1989),

Harvey and Trimbur (2003) and Fleischman and Roberts (2011), with the perfectly cor-

related cycle shock specification relaxing the restriction of identical AR coefficients across

variables. While the studies just mentioned consider trend and cycle components, McElroy

(2017) employs a reduced rank specification of seasonality, for which common seasonality

is a special case.

The illustration of the next section considers a bivariate model (k = 2) and Table 1

sets out the sets of restrictions considered, including the model where the only non-zero

correlations are within components, namely the conventional bivariate UC model. The

number of restrictions imposed by each specification is noted in the table. Although a

same seasonal shock imposing ai = 1 in (16) could also be considered, this was not relevant

for our empirical analysis, as discussed in the next section.
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3 Gender employment in Australia

Birch and Preston (2020) highlight a number of gender-specific aspects of the Australian

labour market, in particular noting that the female labour force participation rate reached

an all-time high of 61% in 2019, only 10 percentage points below the male rate. Although

this does not rule out cointegration, it suggests that the aggregate numbers of female

and male employees in Australia have followed different (deterministic) trends over recent

decades. Further, since more than twice as many females as males work part-time while

many part-time workers in Australia are employed on a casual basis (Birch and Preston,

2020, pp.348-350), it is plausible that female employment may be more susceptible overall

to cyclical and/or seasonal movements than that of males. Recent studies relating to the US

(Hoynes, Miller and Schaller (2012), Guisinger (2020)) indicate that cyclical movements

have gender-specific employment consequences, but do not consider seasonal aspects of

employment.

Despite differences in their characteristics and responses, males and females face a com-

mon macroeconomic environment. Therefore, some commonality is anticipated across male

and female employment. To exploit such commonality without imposing the essentially ar-

bitrary assumption that seasonality is uncorrelated with other time series characteristics,

we apply the bivariate correlated UC models described in the previous section to examine

trend, cyclical and seasonal characteristics of male and female employment in Australia.

3.1 Preliminary analysis

Our data consists of the total number of employed persons (in thousands) by gender in

Australia, provided by the Australian Bureau of Statistics5. We use quarterly data from

1986:Q3 to 2020:Q1, with the end-date avoiding issues arising from the Coronavirus pan-

5The Australian labour force data can be downloaded at https://www.abs.gov.au/statistics/

labour/employment-and-unemployment/labour-force-australia-detailed-quarterly/feb-2020#

data-download
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demic. As usual, the original values are transformed by taking natural logarithms and, in

order to more clearly show cyclical and seasonal movements, are multiplied by 100. Fig-

ure 1 shows that both series exhibit upward trends, with that for females steeper than

for males, together with downswings during the early 1990s. Seasonality is evident in

quarter-to-quarter changes, especially for females.

1990:1 2000:1 2010:1 2020:1
Dates

790

810

830

850

870

890

10
0l

n

100ln(male)
100ln(female)

Figure 1: Male and female employment in Australia in natural logarithm times 100, 1986:Q3
to 2020:Q1
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As a preliminary to our bivariate models, Table 2 reports estimation results for two

univariate UC models6. From HJOT we know that estimation of a correlated univariate

UC trend-cycle-seasonal model requires the imposition of at least one covariance restric-

tion. The first model for each series assumes zero correlation between trend and seasonal

disturbances (ρηω = 0). Since estimation for both series delivers estimated trend-cycle

correlations (ρηε) very close to -1, this restriction is imposed in the second model estimated

for each.

Although some estimates for both series appear quite sensitive to the covariance restric-

tion imposed, it should be borne in mind that the identification conditions for these models

are only just satisfied. Identification requires the AR(2) coefficient to be non-zero and it

is reassuring that the estimated values are generally significant at conventional levels, al-

though the t-ratio in the second specification for male employment is only around 1.2. The

estimated drift coefficients in Table 2 point to the steeper overall trend increase already

noted for female employment compared with males.

According to AIC and BIC, the perfectly correlated trend-cycle model is preferred

for male employment while the uncorrelated trend-seasonal specification is preferred for

female employment. However, the estimated trend component (see Figure 2) for female

employment with ρηω = 0 is implausible, with a ‘hump’ in the early 1990s. On the other

hand, imposing the restriction ρηε = −1 for female employment yields an estimated trend

that closely tracks the actual data and leaves small cyclical fluctuations. The estimated

components for male employment are, however, very similar from the two models. Use of

a bivariate specification may assist in obtaining more satisfactory models for both series,

perhaps particularly for female employment.

In order to develop a bivariate model, and as suggested in the preceding section, we first

6The maximum likelihood estimation results of all the UC models in this paper are obtained using
MATLAB, version R2019b, with the Econometrics ToolboxTM state-space functionality for building the
UC models in state-space forms. The elements in the covariance matrices Σ are computed via nonlinear
transformation of the parameters from the state-space forms, and the delta method is used for computing
the standard errors of the estimated variances and correlations for component shocks.
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check the rank of the matrix D in (13) using the pairs of estimated values from the two

sets univariate correlated UC models of Table 2. In both cases D has rank 19 and hence,

with 21 distinct elements in Σ, the model is under-identified and at least two restrictions

need to be imposed for identification.

Table 2: Estimation results for univariate UC models for male and female
employment in Australia

Parameter Males Females
ρη1ω1 = 0 ρη1ε1 = −1 ρη2ω2 = 0 ρη2ε2 = −1

Males:
ση1 1.043 (0.334) 1.068 (0.921)
σε1 1.124 (0.397) 0.785 (1.072)
σω1 0.019(0.010) 0.018 (0.010)
ρη1ε1 -0.992 (0.014) -1 (-)
ρη1ω1 0 (-) -0.993 (0.043)
ρε1ω1 -0.125 (0.112) 0.993 (0.043)

Females:
ση2 0.823 (0.054) 0.969 (0.405)
σε2 0.215 (0.096) 0.402 (0.577)
σω2 0.040 (0.012) 0.041 (0.013)
ρη2ε2 -1.000 (0.000) -1 (-)
ρη2ω2 0 (-) 0.157 (0.741)
ρε2ω2 0.000 (0.004) -0.157 (0.741)

Others:
β1 0.359 (0.083) 0.340 (0.110)
β2 0.619 (0.017) 0620 (0.094)
φ11 0.588 (0.167) 1.308 (0.250)
φ12 0.136 (0.052) -0.489 (0.398)
φ21 1.865 (0.008) 1.388 (0.113)
φ22 -0.868 (0.003) -0.732 (0.303)

Log Lik. -114.669 -113.693 -159.331 -161.404
AIC 245.337 243.386 334.662 338.808
BIC 268.582 266.628 357.905 362.050

Note: The sample period is 1986Q3 to 2020Q1. Standard errors are shown in parentheses.
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Figure 2: Estimated components of the univariate UC models for Australian male and
female employments. The black lines are estimated components and the red lines are the
employment data in natural logarithm times 100. The univariate model for the left column
assumes zero correlation of trend and seasonal disturbances, i.e., ρηω = 0, and the univariate
model for the right column restricts the correlation of trend and cycle disturbances to be
-1, i.e., ρηε = −1.
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3.2 Bivariate analysis

Table 3 presents estimation results for four bivariate seasonal UC models for employment

by gender in Australia. The first is the standard uncorrelated model, which allows nonzero

disturbance correlations across variables only within each component, so that all cross-

component correlations are assumed to be zero. The other three models show the common

trend, common cycle and common seasonal models which allow cross-component correl-

ations to be nonzero but impose restrictions as discussed in subsection 2.4 and specified

in Table 1. Results for the other specifications discussed there are presented in Table 4.

It may be noted that the number of restrictions imposed in each case (see Table 1) is

substantially larger than the minimum of two required for identification.

Concentrating initially on the benchmark uncorrelated components and the common

component models of Table 3, two specifications stand out in terms of the balance between

goodness-of-fit and parameters estimated, namely in terms of information criteria values:

these are the uncorrelated components and common cycle models, which are preferred by

BIC and AIC respectively. Figure 3 compares the estimated components from these two

models for the male and female employment series. Restricting the cross-component cor-

relations to zero leads to the estimated trends for both series closely tracking the observed

series, hence implying very small estimated cyclical variations. In contrast, the trend series

extracted from the common cycle model are smooth and cyclical variation is evident. In

particular, two downturns are detected during the 1990s, but with relatively little cyclical

variation from early in the current century. These results for employment reflect the long

period of growth experienced by the Australian economy since the 1990s7. Interestingly,

and unlike results for the US (Hoynes, Miller and Schaller (2012), Guisinger (2020)), the

estimate b̂ = 1.3 for the common cycle model in Table 3 implies that cyclical variation in

Australian employment is more marked for females than for men.

7World Bank data (https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=AU)
shows positive annual GDP growth for Australia in each year from 1991 to 2019.
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Table 3: Estimation results for bivariate UC models with uncorrelated and common com-
ponents for male and female employment in Australia

Parameter Uncorrelated Common Trend Common Cycle Common Seasonal

Males:
ση1 0.544 (0.039) 0.631 (0.051) 0.489 (0.107) 0.741 (0.145)
σε1 0.025 (0.043) 0.296 (0.034) 0.041 (0.040) 0.268 (0.322)
σω1 0.015 (0.009) 0.020 (0.014) 0.011 (0.017) 0.016 (0.004)
ρη1ε1 0 (-) -0.813 (0.058) -0.170 (4.300) -0.895 (0.173)
ρη1ω1 0 (-) -0.896 (0.245) -0.719 (0.560) -0.271 (0.821)
ρε1ω1 0 (-) 0.963 (0.189) -0.399 (4.034) 0.599 (0.428)

Females:
ση2 0.635 (0.041) d× ση1 0.681 (0.056) 1.459 (0.519)
σε2 0.138 (0.043) 0.831 (0.062) b× σε1 1.125 (0.508)
σω2 0.038 (0.011) 0.039 (0.011) 0.042 (0.025) a× σω1

ρη2ε2 0 (-) ρη1ε2 ρη2ε1 -0.917 (0.103)
ρη2ω2 0 (-) ρη1ω2 0.519 (0.623) ρη2ω1

ρε2ω2 0 (-) 0.404 (1.413) ρε1ω2 ρε2ω1

Cross-Series:
ρη1η2 0.678 (0.056) 1 (-) 0.461 (0.207) -0.478 (0.160)
ρη1ε2 0 (-) -0.505(0.067) ρη1ε1 0.785 (0.166)
ρη1ω2 0 (-) -0.556 (0.753) -0.239 (0.865) ρη1ω1

ρη2ε1 0 (-) ρη1ε1 -0.953 (1.256) 0.507 (0.280)
ρη2ω1 0 (-) ρη1ω1 0.138 (1.121) -0.191 (0.301)
ρε1ε2 -0.995 (0.031) 0.911 (0.043) 1 (-) -0.731 (0.249)
ρε1ω2 0 (-) 0.562 (1.122) -0.658 (1.407) ρε1ω1

ρε2ω1 0 (-) 0.795 (0.356) ρε1ω1 0.067 (0.268)
ρω1ω2 1.000 (0.001) 0.685 (0.244) 0.835 (0.445) 1 (-)

Others:
β1 0.366 (0.046) 0.386 (0.051) 0.345 (0.043) 0.386 (0.053)
β2 0.605 (0.054) d× β1 0.594 (0.061) 0.782 (0.142)
b 1.296 (1.134)
a 2.269 (0.489)
d 0.948 (0.002)
φ11 0.181 (0.169) 1.655 (0.008) 1.872 (0.022) 0.037 (0.306)
φ12 0.733 (0.154) -0.713 (0.011) -0.943 (0.029) 0.508 (0.171)
φ21 -0.879 (0.313) 0.952 (0.012) 1.359 (0.013)
φ22 -0.503 (0.312) 0.057 (0.012) -0.354 (0.000)

Log Lik. -257.512 -251.697 -248.193 -270.395
AIC 545.024 545.393 536.385 584.785
BIC 588.603 606.404 594.491 648.701

Note: The sample period is 1986Q3 to 2020Q1. Standard errors are shown in parentheses.
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Table 4: Estimation results for other bivariate UC models for male and female employment
in Australia

Parameter Same cycle shock Same trend shock Perf-corr cycle shock Perf-corr trend shock

Males:
ση1 1.144 (0.323) 1.418 (0.409) 0.478 (0.076) 4.291 (0.121)
σε1 0.877 (0.362) 1.589 (0.272) 0.171 (0.207) 4.157 (0.125)
σω1 0.016 (0.013) 0.018 (0.013) 0.017 (0.227) 0.022 (0.012)
ρη1ε1 -0.992 (0.008) -0.942 (0.018) -0.155 (1.311) -0.994 (0.001)
ρη1ω1 -0.807 (0.672) 0.517 (0.641) -0.468 (2.335) -0.913 (0.242)
ρε1ω1 0.744 (0.754) -0.701 (0.615) -0.650 (0.535) 0.879 (0.278)

Females:
ση2 1.207 (0.309) ση1 1.045 (1.050) d× ση1
σε2 σε1 1.045 (0.332) b× σε1 9.536 (0.048)
σω2 0.041 (0.013) 0.041 (0.015) 0.043 (0.043) 0.043 (0.014)
ρη2ε2 ρη2ε1 ρη1ε2 ρη2ε1 ρη1ε2
ρη2ω2 0.030 (0.533) ρη1ω2 0.510 (1.286) ρη1ε2
ρε2ω2 ρε1ω2 -0.041 (0.962) ρε1ω2 0.435 (0.660)

Cross-Series:
ρη1η2 0.866 (0.074) 1 (-) 0.385 (0.199) 1 (-)
ρη1ε2 ρη1ε1 -0.919 (0.086) ρη1ε1 -0.999 (0.000)
ρη1ω2 -0.464 (0.474) 0.053 (0.913) 0.072 (1.465) -0.455 (0.649)
ρη2ε1 -0.912 (0.063) ρη1ε1 -0.971 (0.281) ρη1ε1
ρη2ω1 -0.497 (0.898) ρη1ω1 0.495 (1.270) ρη1ω1

ρε1ε2 1 (-) 0.998 (0.013) 1 (-) 0.997 (0.001)
ρε1ω2 0.353 (0.526) -0.041 (0.947) -0.527 (1.762) 0.473 (0.652)
ρε2ω1 ρε1ω1 -0.728 (0.646) ρε1ω1 0.894 (0.266)
ρω1ω2 0.744 (0.286) 0.580 (0.434) 0.751 (0.611) 0.630 (0.355)

Others:
β1 0.378 (0.082) 0.289 (0.113) 0.370 (0.081) 0.693 (0.061)
β2 0.620 (0.086) 0.740 (0.497) 0.668 (0.062) 1.155 (0.121)
b 3.783 (3.330)
d 2.147 (0.063)
φ11 1.254 (0.101) 1.024 (0.002) 1.784 (0.070) 0.978 (0.009)
φ12 -0.434 (0.127) -0.034 (0.019) -0.804 (0.029) -0.018 (0.011)
φ21 1.313 (0.100) 1.326 (0.001) 1.642 (0.012) 0.961 (0.001)
φ22 -0.462 (0.109) -0.322 (0.013) -0.648 (0.008) 0.021 (0.003)

Log Lik. -251.868 -252.705 -247.139 -247.142
AIC 545.735 547.409 538.279 538.285
BIC 606.746 608.42 602.195 602.201

Note: The sample period is 1986Q3 to 2020Q1. Standard errors are shown in parentheses.
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Figure 3: Comparison of the estimated trend, cycle and seasonal components for an uncor-
related UC model and a common cycle model for Australian male and female employment.
The black lines are estimated components and the red lines are employment values in
natural logarithm times 100.
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It is also notable that the bivariate common cycle model yields much smoother cyclical

components than any of the univariate UC models in Figure 2, indicating the value of

combining information available in the two series alongside a flexible covariance structure.

Also note that some (albeit fairly subtle) differences can be seen in the estimated seasonal

component for each series across the models of Figures 2 and 3.

It is also useful to discuss the results of the other specifications in Tables 3 and 4.

We have already commented above that male and female employment in Australia appear

to exhibit different deterministic trends over time, and hence it is unsurprising that the

common trend model of Table 3 is not a preferred specification. While the less restricted

version of the perfectly correlated trend shock model in Table 4 yields improved values for

the information criteria, the common cycle model is still preferred to this specification and

also to the same trend shock model of that table. In the light of the estimated seasonal

patterns for the two series across a range of specifications, it is also unsurprising that the

common seasonal model of Table 3 leads to relatively poor information criteria values.

Further, note that the common cycle model is preferred to the perfectly correlated cycle

shock and the same cycle shock models (Table 4)8.

In summary, having examined a range of specifications, the common cycle model for

gender employment in Australia is preferred. It produces plausible outcomes for trend,

cycle and seasonal components for males and females and also gives the lowest AIC value

across the seven bivariate models considered. The results suggest that males and females

do not have the same seasonality. Explanations might be the sectors in which females work

or that they prefer part-time to full-time.

8The figures in the appendix (Figures A.1 - A.4) correspond to the models of Table 4.
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4 Conclusion

Multivariate analysis of economic time series can throw important light on underlying

economic phenomena, including trend, cyclical and seasonal movements. In order to analyze

such movements when they are potentially correlated, a correlated multivariate unobserved

components model is required. Although previously considered in a univariate context, to

the best of our knowledge the present paper is the first to study identification conditions for

a multivariate trend-cycle-seasonal model with correlated shocks. Although restrictions are

required to deliver identification, we believe that forms of cross-equation restrictions that

we study (including common trends, common cycles and common seasonality) are intuitive

and allow the approach to be applied in a variety of real-world situations.

The approach is illustrated by an application to quarterly aggregate male and female

employment in Australia. Although a range of specifications is considered, including com-

mon trend, common seasonality and the uncorrelated component model, the common cycle

specification is preferred. Indeed, graphical and univariate analyses also point to a com-

mon cycle as the most plausible form of restriction to be imposed, with evidence of distinct

gender-based trend and seasonal patterns.
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A Additional results
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Figure A.1: A comparison of estimated trend, cycle and seasonal components for a common
trend model and a common seasonal component model. The Black lines are estimated
components and the red lines are employment values in natural logarithm times 100.
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Figure A.2: A comparison of estimated trend, cycle and seasonal components for the model
with the same cycle shock and the model with the same trend shock. The Black lines are
estimated components and the red lines are employment values in natural logarithm times
100.
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Figure A.3: A comparison of estimated trend, cycle and seasonal components between the
univariate models and a bivariate model, in which male and female employment share a
common cycle component. The Black lines are estimated components and the red lines are
employment values in natural logarithm times 100. In the univariate model the correlation
between trend and cycle shocks is assumed equal to -1.
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Figure A.4: A comparison of estimated trend, cycle and seasonal components between
the bivariate model with perfectly correlated cycle shocks and the bivariate model with
perfectly correlated trend shocks. The Black lines are estimated components and the red
lines are employment values in natural logarithm times 100.
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