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Abstract. We study weakly supervised learning for object detectors,
where training images have image-level class labels only. This problem
is often addressed by multiple instance learning, where pseudo-labels of
proposals are constructed from image-level weak labels and detectors are
learned from the potentially noisy labels. Since existing methods train
models in a discriminative manner, they typically suffer from collapsing
into salient parts and also fail in localizing multiple instances within an
image. To alleviate such limitations, we propose simple yet effective regu-
larization techniques, weight reinitialization and labeling perturbations,
which prevent overfitting to noisy labels by forgetting biased weights. We
also introduce a graph-based mode-seeking technique that identifies mul-
tiple object instances in a principled way. The combination of the two
proposed techniques reduces overfitting observed frequently in weakly
supervised setting, and greatly improves object localization performance
in standard benchmarks.

Keywords: Weakly supervised learning - object detection - regulariza-
tion.

1 Introduction

Object detection algorithms recently demonstrate remarkable performance thanks
to advances of deep neural network technologies [5,12,13,24,27,28,30] and well-
established datasets provided with bounding box annotations [11,20,23]. Despite
their great success, many object detection algorithms still suffer from a critical
limitation caused by lack of training examples with proper annotations. In par-
ticular, due to substantial cost for bounding box labeling and inherent skewness
of training data distributions, existing datasets for object detection are often in-
sufficient in their quantity and diversity for majority of classes. This fact incurs
overfitting to datasets and damages generalization performance of models.
Weakly supervised object detection (WSOD) has been studied as a solution
to the above issues [1,2,4,21,22,39]. The primary goal of this task is to train ob-
ject detectors using image-level class labels only. The limitations of the standard
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object detection algorithms can be alleviated by weakly supervised approaches
because image-level class labels are readily available in several existing large-
scale datasets for image classification, e.g. ImageNet [6], or easily obtainable due
to their low annotation cost. However, learning object detectors based only on
image-level class labels is challenging because the labels indicate presence or
absence of each object class without localization information of objects.

Many recent weakly supervised object detection algorithms rely heavily on
weakly supervised deep detection network (WSDDN) [2]. This approach iden-
tifies relevant bounding boxes to individual classes by applying softmax op-
erations to score matrices across object proposals and candidate class labels.
The performance of this method has been improved by adding a few refinement
layers [39]. However, WSDDN and its extensions have the following critical lim-
itations. First, as in many other weakly supervised object detection techniques,
noisy annotations estimated by object detectors based on weak labels may make
models converge to bad local optima in training. Second, due to characteristics
of softmax functions, the method is prone to identify only a single target class
and object instance in an input image. Consequently, they are not effective to
handle images with multiple objects corresponding to diverse class labels.

To alleviate the limitations, we propose simple yet effective multi-round reg-
ularization techniques for handling noisy labels, and introduce a graph-based
labeling method for mining multiple instances in the same class. Specifically, we
integrate refinement layers into the WSDDN architecture and perform multiple
rounds of training with randomly reinitialized weights of the refinement layers.
This regularization technique prevents the deep neural network from overfitting
by forgetting biased weights. Also, a mode-seeking algorithm is performed on a
graph of object proposals to identify multiple target instances in a principled
way, where the graph is constructed to diversify pseudo-labels by perturbing a
threshold to connect vertices corresponding to proposals. The combination of the
multi-round regularization and the graph-based labeling improves object detec-
tion accuracy substantially in the standard weakly supervised setting for object
detection. Our main contributions are summarized as follows:

e We introduce simple multi-round regularization techniques for weakly super-
vised object detection, which are based on refinement layer reinitializations
and labeling perturbations, to tackle overfitting issues caused by falling into
bad local optima.

e We propose a mode-seeking technique for labeling candidate bounding boxes,
where a graph structure of object proposals is constructed based on their
class scores and spatial proximities. This method is helpful to identify mul-
tiple object instances of a class in a principled way.

e We demonstrate that our approach improves performance significantly with
respect to the state-of-the-art methods in weakly supervised object detection
on the standard benchmarks such as PASCAL VOC 2007 and 2012.

This paper has the following organization. Section 2 discusses related work
and Section 3 presents technical background of our problem. We describe the
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proposed regularization and label generation techniques in Section 4. Experi-
mental results with internal and external comparative study are presented in
Section 5, and we conclude this paper in Section 6.

2 Related Work

This section describes existing approaches about weakly supervised object de-
tection and regularization of deep neural networks.

2.1 Weakly Supervised Object Detection

Weakly supervised object detection algorithms typically rely only on image-level
class labels in text to find all the bounding boxes corresponding to objects in
target classes. There have been a large volume of research in this interesting
topic [1,2,4,18,21,22,26,39,46]. Most approaches in this line of research fol-
low the idea of Multiple Instance Learning (MIL) [8]; a set of proposals from
an image constructs a bag, and its label is determined by its image-level weak
labels. During training, the approaches alternate selecting the most representa-
tive proposals in positive images and learning object detectors using tentatively
estimated positive and negative instances. Since a list of true positive instances
per image is latent, the optimization is inherently sensitive to initializations of
individual examples and prone to fall into bad local optima consequently.

Most MIL-based approaches attempt to improve initialization [7,22,36,37,45]
and enhance classifiers through optimization [1,2,4,33,35,39,41]. Li et al. [22]
collect class specific object proposals and optimize the network progressively
using confident object candidates. Self-taught learning approach [17] has been
proposed to obtain high-quality proposals progressively. Diba et al. [7] intro-
duce cascaded networks with multiple learning stages, which incorporate class
specific proposal generation and MIL in an end-to-end pipeline. Multi-fold MIL
method [4] splits training data into multiple subsets and learn models to escape
from local optima and avoid overfitting. Wang et al. [41] perform clustering of
object proposals based on their scores and overlap ratios, and minimize entropy
of proposal scores in the same cluster, by which it improves localization accuracy
and reduces localization randomness.

WSDDN [2] is probably the most popular MIL based end-to-end deep frame-
work, where image-level classification loss is computed by a sum of proposal
scores. This framework has been investigated further and a variety of exten-
sions have been proposed recently [4, 18,33, 39,41, 44, 45]. Kantorov et al. [18]
integrates semantic context information to identify tight bounding boxes corre-
sponding objects of interest. Tang et al. [39] diffuses labels estimated by WSDDN
to highly-overlapped bounding boxes and learns object detectors end-to-end.
Saliency-guided proposal selection has been proposed in [21] to generate reliable
positive examples by drawing boxes enclosing areas with heavy class-specific
attention, where classification and saliency losses of the proposals are jointly
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Fig. 1. The network architecture of the proposed approach. A feature of each proposal
is extracted from a spatial pyramid pooling layer followed by two fc layers and then
fed to WSDDN and multiple classifier refinements for training. Supervision for each
refinement step is given by the predictions of the preceding step. Our graph-based
labeling generates pseudo ground-truth labels for the proposals that are used to learn
refinement layers.

optimized to localize objects. Zhang et al. [45] generate diverse and reliable pos-
itive examples by merging boxes with detection scores from [39]. Zhang et al. [44]
train a detector by feeding training examples in an increasing order of difficulty.
Shen et al. [33] present a generative adversarial learning method to train a detec-
tor, which emulates a surrogate detector similar to WSDDN, using image-level
annotations only.

2.2 Regularization of Deep Neural Networks

Regularization on deep neural networks is a crucial technique to avoid overfit-
ting that results from overparametrized nature of networks. Even simple heuris-
tics including early stopping, weight decay, and data augmentation turn out to
be effective in practice. A class of well-known techniques is regularization by
noise injection, where random noises are added to input images [29], ground-
truth labels [43], or network weights [19,42] during training for better general-
ization. In particular, dropout [38] and dropconnect [42] employ binary ran-
dom noise to hidden units or connections of neural networks, and learning
with stochastic depth [14, 15] can be interpreted as a regularization method
by noise injection into model architecture. Recently, [25] discusses theoretical
aspect of regularization-by-noise techniques, and [31] proposes a confidence cal-
ibration technique based on stochastic regularization. Unlike existing methods,
the proposed multi-round regularization technique is specialized to the scenario
of weakly supervised object detection.

3 Preliminaries

Our approach builds on WSDDN [2] and its refinement [39]. Figure 1 illustrates
the network architecture and label generation algorithm of our approach. Given
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an image I and its binary label vector with C' classes y = [y1, ..., yc], WSDDN
learns objectness score s, for class c of proposal r through elementwise multi-
plication of classification confidence, 1, € RE*|®l and localization confidence,
Y1 € REXIRI The value of an element corresponding to an (r,c) pair in the
resulting matrix is given by

Se,r = ’lpcls (C; T) ' 'Itbloc (T; C)
fcls(c; ’I’) . floc('r; C)
Sy exp(fen(iir) - L exp(fioc(ii )

(1)

where fos(c; r) denotes an activation of a class ¢ given a proposal r in the network
while fioe(r;¢) is an activation of a proposal r given a class ¢. Image-level class
score vector, ¢ = {¢1,...,0c}, is computed by a global sum pooling over all
proposals, which is given by

IR

e = Z Sc,ry (2)
r=1

and the score is employed to compute a multi-class cross entropy loss Lysqdan as
follows:

C
Lysaan = — Y yelogde + (1= ye)log (1 — ¢c). (3)
c=1

To avoid converging discriminating parts of an object, additional refinement
layers are added to WSDDN. The refinement layers are trained using pseudo
ground-truth labels determined by proposal scores from preceding steps as il-
lustrated with red dashed arrows in Figure 1. The loss function for the k!
refinement step, where k € {1,2,..., K}, is given by

1 Rlc+t
k kk k
Ereﬁne = _W Z Z w,. Zc,r IOg Sc,r7 (4)
r=1 c=1
where sl(fw and z(’f,r denote the output score and the pseudo-label of a proposal

7 in the k'™ refinement for a class ¢, respectively, while w¥ is the weight of the
proposal, which is used to manage noisy supervision in the refinement layers and
avoid unstable solution. Note that each class has a class index ¢ € {1,2,...,C+1}
in a fixed order and the last index C' + 1 corresponds to background. The total
loss of our overall network is obtained by combining those two losses as follows:

K
L= ‘Cwsddn + Z Efeﬁne‘ (5)
k=1

During inference, a final detection score for each proposal is computed by aver-
aging softmax scores over all refinement classifiers.
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Algorithm 1 Learning our WSOD network with multi-round regularization
1: Input: Number of training rounds 7, number of refinement steps K.

2: for i =1to T do

3: Initialize parameters of refinement layers randomly. (Section 4.1)

4 Update Oiou for labeling perturbation. (Section 4.1)

5 for each iteration do

6 Build a proposal graph with 01,u in each refinement step of each image.
T: Generate labels of individual labels. (Section 4.2))
8.

9
10:

Train the network with K refinement steps using the loss function in Eq. (5).
end for
end for

4 Our Approach

The architecture introduced in Section 3 has two inherent issues. First, as the
architecture is trained using pseudo-labels in refinement steps, the learning pro-
cedure is prone to fall in bad local optima. Second, due to the limitation of the
labeling scheme during refinement steps, it identifies only a single object instance
in an image even in the case multiple instances exist in the image.

To tackle these challenges, we propose multi-round regularization and graph-
based labeling techniques in our weakly supervised object detection framework.
Both components are useful to improve object detection performance. The over-
all learning procedure is outlined in Algorithm 1, and we discuss the details of
each component in the rest of this section.

4.1 Multi-Round Regularization of Refinement

Our weakly supervised object detection algorithm relies on MIL, where we ob-
tain pseudo ground-truth labels for individual bounding boxes based on their
prediction scores for training object detector. However, as expected, this strat-
egy may incur a lot of label noises, which leads to increase of modeling bias and
prediction error. To mitigate this limitation, we present multi-round regulariza-
tion techniques that improve target object representation and avoid overfitting
of our weakly supervised object detection network. Note that the multi-round
regularization is specialized to weakly supervised learning because labels of all
examples are dynamically determined in each stage depending on network pa-
rameters. We claim that multi-round regularization is useful to consider potential
label noise and reduce training bias in weakly supervised setting.

Our multi-round regularization has two components, refinement layer reini-
tialization and label perturbation. The second component is related to graph-
based label generation method. The multiple rounds of training with reinitializa-
tion and perturbation reduce the bias of the learned models affected by a fixed
but potentially erroneous labels and prevent the models from being converged
to bad local optima.
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Reinitialization of refinement layers Our refinement network is composed
of a single fc layer in each stage, and we simply reinitialize the parameters in
the refinement layers of all three stages in each round of training. Since the last
fc layers in the classifier refinements are trained using the labels predicted by
the preceding stages, these layers may be biased by noisy labels. However, if the
fc layers are reinitialized before starting the next round, we can diversify labels
and avoid overfitting problem while feature extraction parts of the network learn
better representations for target classes.

Labeling perturbation for refinements The pseudo ground-truth labels of
individual bounding boxes are determined by a graph-based labeling algorithm,
which will be discussed in Section 4.2. Another regularization scheme for our
weakly supervised object detection is to perturb the instance labels during our
training procedure. This regularization method is based on a similar motivation
to the reinitialization technique discussed above, where we aim to reduce bias
of learned models originated from noisy labels. Instead of random perturbation,
we adjust a parameter, which directly affects label assignment for each bound-
ing box, the graph construction in each round of training and decide the label
of each proposal using the graph-based labeling algorithm with the perturbed
parameters. This label perturbation strategy increases diversity in the number
of detected objects, and make our models optimized towards a new objective
given by a different label set in each round.

4.2 Graph-based Label Generation

Since images often include multiple instances of a class, the label generation
method should be able to handle an arbitrary number of object instances con-
ceptually. Hence, we propose a new labeling method based on mode-seeking on
a graph structure, which is illustrated inside the red dashed box of Figure 1. Our
graph-based labeling technique facilitates to identify diverse positive proposals
by building a graph structure of proposals based on their overlap relations and
finding multiple modes with high classification scores. This graph-based label-
ing allows us to obtain accurate labels by diversifying annotations and improve
quality of trained models. Note that Tang et al. [39] regard proposals that have
large overlap (> 0.5 in terms of IOU) with the top-scoring bounding box as
positive instances while making the remaining ones negative; selecting only pos-
itive examples from a single mode inherently limits capability to handle multiple
objects in an images.

Our graph-based label generation method first constructs a neighborhood
graph of proposals for each object class in each image. In the graph of class c at
refinement step k, denoted by G¥ = (V¥, £F), a vertex corresponds to a proposal
with a sufficiently large classification score given by the preceding step, and an
edge connects two of vertices if the proposals for the vertices have sufficiently
large overlap to each other. Formally, the sets of vertices and edges are defined
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Algorithm 2 Graph-based mode-seeking algorithm

Input: Graph G = (V, £) and weight vector w € R!V!
Output: A detected mode set M
h<« [1,2,...,|V] € RVl /* his a cluster indicator vector */
while until h converges do

for u € V do

h(u) argmax, ey, - w(v) /* medoid-shift */

end for
end while
M <+ a set of unique elements of h

o
<

Vf = {v|s’§;1 >0s, veER}

! (6)
EF ={(u,v)| IoU(u,v) > Oou, u,v € R},

where u and v denote object proposals, s’j;l is a proposal score predicted in the
preceding step, 6, is a threshold for the score, IoU(u, v) is intersection-over-union
measure between proposals, and 0,y is an ToU threshold.

Then we perform a mode-seeking algorithm, medoid-shift [3, 32], on this
graph. The algorithm is useful in practice because it finds multiple reliable modes
of data distribution and requires no manual initialization and terminating con-
ditions. Specifically, we first compute the weight of each node u € V of G by

we(u) = Z Sew0 (U, v). (7)

veY

where 6(-,-) = 1 if there exists an edge (u,v) € &, and 0 otherwise. Then,
medoid-shift algorithm is applied to the graph and identifies a set of modes,
where each vertex is associated with one of the modes after convergence. Since
such a mode-seeking algorithm often finds spurious modes, we adopt a mode
filtering technique, which maintains only salient modes based on topological
persistence of a graph [9]. The proposals corresponding to the modes obtained
from mode-seeking and mode filtering procedures receive positive labels. The
entire procedure of the proposed method is summarized in Algorithm 2.

After finding the modes, the rest of proposals r for a class ¢ are given a
pseudo-label z. , as follows:

1 if IoU(m,r) > 0.5, m € M, and y. =1
Zer = . ) (8)
' 0 otherwise

where M. is a set of detected modes for class ¢ and y. denotes image-level binary
class label for class c. In other words, proposals sufficiently overlapped with any
of detected modes are labeled to be positive and the rest are given negative labels
in a similar way to OICR [39]. This labeling method is employed to compute a
loss in Eq. (4) for all refinement steps.
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5 Experiments

This section presents performance of our regularization algorithm with graph-
based labeling. We also compare the proposed approach with the state-of-the-art
methods and show results from ablation study of our technique.

5.1 Implementation Details

We use VGG_M and VGG16 [34] networks pretrained on ImageNet [6] classifica-
tion task to obtain image representation. To compute feature descriptors of all
proposals at once, the last max-pooling layer is replaced by a spatial pyramid
pooling (SPP) layer as in Fast-RCNN [12]. For training, we employ the stan-
dard stochastic gradient descent (SGD) method with batch size 2. The model is
trained with 50K iterations in each round, where the learning rate of the first
40K iterations is set to 0.001 and then decreased to 0.0001 for the last 10K itera-
tions. Initial momentum and weight decay are set to 0.9 and 0.0005, respectively.
Every image is rescaled to the sizes that the length of the shorter side becomes
one of {480, 576, 688, 864, 1200} while we preserve aspect ratios. Approximately
2,000 object proposals are generated for each image by applying selective search
algorithm [40] in fast mode. We set the score threshold 65 to the half of the
maximum proposal scores for each class ¢. Our algorithm 4 rounds of iterative
training procedure with parameter reinitialization while the number of refine-
ment steps is set to 3, i.e., , K = 3. Our experiments run on a NVIDIA GTX
Titan Xp GPU and the implementation is based on the Caffe [16] framework.

5.2 Datasets and Evaluation Metrics

We evaluate our method on PASCAL VOC 2007 [11] and 2012 [10] datasets,
which consist of a total of 9,963 and 22,531 images from 20 object classes. We
train our model on train+validation splits of PASCAL VOC 2007 and 2012
datasets, consisting of 5,011 and 11,540 images, respectively. Since our approach
lies on weakly supervised setting, only image-level annotations for class labels
are used for training. For testing, we utilize 4,952 and 10,991 test images from
PASCAL VOC 2007 and 2012 datasets, respectively. All ablation studies are
performed on PASCAL VOC 2007 dataset.

Our quantitative evaluation metric is the mean of Average Precisions (APs)
over classes. The number of true positives is the count of object proposals that
have more than 0.5 IoU overlap with ground-truths. We also measure Correct
localization (CorLoc) to evaluate localization accuracy of our model on the train-
ing set. The final inference is given by averaging scores from all the refinement
steps. Before evaluating and measuring AP and CorLoc scores, non-maximum
suppression is applied to positive examples with 0.3 IoU threshold.

5.3 Ablation Study

Impact of refinement layer reinitialization We first validate the effective-
ness of our refinement layer reinitialization scheme on PASCAL VOC 2007 test
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Table 1. Comparison between network refinement with and without layer reinitial-
ization. We test VGG_M and VGG16 networks with several different numbers of re-
finement layers on VOC 2007 test set. We report accuracy in terms of mAP (%). RL
means refinement layer in the table.

Methods (a) With layer reinitialization | (b) Without layer reinitialization
(round / iterations) (R1 / 50k) (R2 / 50k) (= / 50k) (- / 100k)
Ours-1RL-VGG_M 35.6 36.2 35.6 35.6
Ours-2RL-VGG_M 36.3 37.6 36.3 34.8
Ours-3RL-VGG_M 38.0 39.2 38.0 38.7
Ours-1RL-VGG16 36.2 40.2 36.2 37.4
Ours-2RL-VGG16 41.6 43.9 41.6 42.1
Ours-3RL-VGG16 42.6 44.6 42.6 42.2

Table 2. Comparison of two labeling methods after training for 50k iterations on VOC
2007 test set: (a) labeling example by propagating positive labels based on overlaps
from the bounding box with the maximum classification score, and (b) labeling with
multi-modal score distribution given by mode-seeking technique on a graph structure
of proposals.

Methods H Base network ‘ RL ‘ mAP

33.5
36.0
36.4
35.8
39.1
41.8
35.6
36.3
38.0
36.2
41.6
42.6

VGG-M
(a) Maximum GT

VGG16

VGGM
(b) Graph-based GT (ours)

VGG16

WK FWN R WNDFWN =

set. For the purpose, we compare mAPs of two models—with and without reini-
tialization of the fc layers for refinement—after training for the same number of
iterations altogether in both cases, 50k and 100k. Both VGG_M and VGG16 net-
works are employed as backbone CNNs for this experiment. Table 1 summarizes
the results. The performance of the models with reinitialization is improved
significantly in the second round while the ones without layer reinitialization
generally have marginal gains in the second half of the 100k iterations.

Impact of graph-based label generation Table 2 illustrates results from two
different methods for generation of pseudo ground-truths. The one identifies pos-
itive examples from only a single mode corresponding to the bounding box with
a maximum score (maximum GT) and the other extract them from multi-modal
score distribution over bounding boxes given by the mode-seeking algorithm via



Regularized Refinement for Weakly Supervised Object Detection 11

Table 3. Results with different IoU thresholds in Eq. (6) for graph construction. Note
that the labels obtained from the graph are integrated into the refinement layer reini-
tialization. Evaluation is performed with VGG16 network on VOC 2007 test set. We
report accuracy in terms of mAP (%).

Methods H 010U ‘ Roundl Round2 Round3 Round4 Round5
Ours-1RL 36.2 102 10.8 114 11.6
Ours-2RL 0.1 41.6 43.9 43.6 43.8 43.1
Ours-3RL 42.6 44.6 44.4 43.4 43.1
Ours-1RL 36.0 39.5 10.2 10.8 105
Ours-2RL 0.5 38.0 40.5 41.9 42.5 41.9
Ours-3RL 40.3 41.5 41.6 41.2 41.2
Ours-1RL 36.2 102 104 a1 20.1
Ours-2RL 0%1(&{022‘13 1’42) 5| 416 43.9 4.5 4.5 43.7
Ours-3RL - {Round 3, %, 42.6 44.6 45.5 45.4 44.0

medoid-shift on a graph structure (graph-based GT). For this experiment, IoU
threshold 0,y for graph construction is set to 0.1. After one round of train-
ing, our graph-based mode-seeking technique outperforms the naive single GT
method on both VGG_M and VGG16 networks consistently.

Impact of labeling perturbations We also investigate influence of label per-
turbation by varying IoU threshold for edge connectivity of proposal graph. As
mentioned in Section 4.1, definition of spatial adjacency between vertices affects
pseudo ground-truth construction and final label estimation. We test with two
IoU thresholds, 0.1 and 0.5. Table 3 presents the results with VGG16 network
for the several tested options. The proposed labeling perturbation method works
well in general, especially with more refinement steps. Also, when we use a small
threshold value at the early stage of training and then increase its value later,
detection accuracies are improved compared to the cases with fixed thresholds.
It is probably because this strategy is effective to reject noisy examples quickly
in the early stages and maintain multiple positive instances in the later ones.

5.4 Results on PASCAL VOC Datasets

We compare the proposed algorithm with existing state-of-the art methods for
weakly supervised object detection including WSDDN [2], WSDDN+context [18],
OICR [39], SelfTaught [17], WCCN [7], SGWSOD [21], ZLDN [44], GAL300 [33].
Table 4 and 5 present performance of all compared algorithms on PASCAL VOC
2007 dataset in terms of mean of APs and CorLoc, respectively. We also present
the performances on PASCAL VOC 2012 dataset in Table 6. Best performance
of each measure is marked with bold and second best is marked with underline.

To obtain the final results, we use the models trained for four rounds with
refinement layer reinitialization. Our model with 3 refinement layers based on
VGG16, which is denoted by Ours-3RL-VGG16 in the table, achieves signifi-
cantly improved accuracy compared to OICR-VGG16 [39]. This result suggests
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Table 4. AP (%) of all compared algorithms on VOC 2007 test set. Asterisk (*)
denotes the method that uses an external detector such as Fast-RCNN or SSD within
its framework.

Method ‘aero bike bird boat bottle bus car cat chair cow ‘
WSDDN-VGG16 [2] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7
WSDDN+-context [18] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1
OICR-VGG16 [39] 58.0 62.4 31.1 194 13.0 65.1 62.2 28.4 24.8 44.7
SelfTaught-VGG16 [17] 52.2 47.1 35.0 26.7 154 61.3 66.0 54.3 3.0 53.6
WCCN-VGG16 [7] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1
SGWSOD-VGG16 [21] 48.4 61.5 33.3 30.0 15.3 724 62.4 59.1 10.9 42.3
OICR-Ens [39] 58.5 63.0 35.1 16.9 174 63.2 60.8 34.4 8.2 49.7
OICR-Ens+FRCNN [39] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 359 5.7 63.1

GAL300-VGG16+SSD* [33] [52.0 60.5 44.6 26.1 20.6 63.1 66.2 65.3 15.0 50.1
ZLDN-VGG16+FRCNN* [44]|55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8
OICR-VGG16+FRCNN [39] [60.9 62.9 50.5 28.9 17.1 70.3 68.1 27.0 25.7 58.8
Ours-3RL-VGG16 62.1 55.7 42.0 31.1 17.2 67.6 652 50.8 20.4 51.5
Ours-3RL-VGG16+FRCNN [59.8 62.8 45.6 33.2 21.8 70.2 68.6 56.6 22.8 55.9

Method ‘table dog  horse mbike personplant sheep sofa train tv ‘Avg.
WSDDN-VGG16 [2] 24.9 382 344 55.6 94 14.7 30.2 40.7 54.7 46.9 |34.8
WSDDN+-context [18] 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 |36.3
OICR-VGG16 [39] 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 [41.2
SelfTaught-VGG16 [17] 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 |41.7
WCCN-VGG16 [7] 29.9 422 479 64.1 13.8 23.5 459 54.1 60.8 54.5 |42.8
SGWSOD-VGG16 [21] 34.3 53.1 484 65.0 20.5 16.6 40.6 46.5 54.6 55.1 |43.5
OICR-Ens [39] 41.0 31.3 519 64.8 13.6 23.1 41.6 48.4 58.9 58.7 [42.0
OICR-Ens+FRCNN [39] 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 [47.0

GAL300-VGG16+SSD* [33] [52.8 56.7 21.3 63.4 36.8 22.7 47.9 51.7 68.9 54.1 [47.0
ZLDN-VGG16+FRCNN™ [44]47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 |47.6
OICR-VGG16+FRCNN [39] [41.9 20.7 424 65.5 7.1 24.6 51.5 61.9 62.7 56.5 |45.3
Ours-3RL-VGG16 36.3 34.1 46.2 65.8 12.3 21.9 48.8 55.4 60.2 65.7 |45.4
Ours-3RL-VGG16+FRCNN |47.5 40.8 59.0 65.0 9.1 224 49.5 64.6 57.8 57.3 |48.8

that our training method is very effective because the two models have the ex-
actly same network architecture. We also train a Fast-RCNN [12] (FRCNN)
detector based on the labels of the proposals with the highest scores given by
our method in individual images. Our final model (Ours-3RL-VGG16+FRCNN)
shows higher mAP score than the state-of-the-art methods in both datasets. It is
also noticeable that even our method without using FRCNN (Our-3RL-VGG16)
outperforms even the ensemble OICR model (OICR-Ens) and the OICR-VGG16-
FRCNN method. In terms of CorLoc, we achieve the second best score among
the comparison methods on PASCAL VOC 2007 dataset and the top score on
2012 dataset.

Figure 2 and 3 illustrate qualitative examples and failure cases, respectively.
Our method is effective in finding more accurate bounding boxes of the objects
compared to OICR, but still confused with the objects that have similar appear-
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Table 5. CorLoc (%) of all compared algorithms on VOC 2007 trainval set. Asterisk
(*) denotes the method that uses an external detector such as Fast-RCNN or SSD
within its framework.

Method ‘aero bike bird boat bottle bus car cat chair cow ‘
WSDDN-VGG16 [2] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5
WSDDN+-context [18] 83.3 68.6 54.7 234 183 73.6 741 54.1 8.6 65.1
OICR-VGG16 [39] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5
SelfTaught-VGG16 [17] 72.7 55.3 53.0 27.8 35.2 68.6 819 60.7 11.6 71.6
WCCN-VGG16 [7] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 725
SGWSOD-VGG16 [21] 71.0 76.5 54.9 49.7 54.1 78.0 874 68.8 324 752
OICR-Ens [39] 85.4 78.0 61.6 40.4 38.2 82.2 84.2 46.5 15.2 80.1
OICR-Ens+FRCNN [39] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2

GAL300-VGG16+SSD* [33] [76.5 76.1 64.2 48.1 52.5 80.7 86.1 73.9 30.8 78.7
ZLDN-VGG16+FRCNN* [44]|74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1
OICR-VGG16+FRCNN [39] [86.7 81.2 64.0 50.5 30.9 83.2 85.3 38.7 45.1 80.1
Ours-3RL-VGG16 85.4 71.4 61.6 559 37.0 83.2 84.2 61.3 29.7 774
Ours-3RL-VGG16+FRCNN [86.3 77.6 65.5 55.9 41.6 82.7 86.7 61.6 39.7 80.8

Method ‘table dog  horse mbike personplant sheep sofa train tv ‘Avg.
WSDDN-VGG16 [2] 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 |53.5
WSDDN+-context [18] 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 |55.1
OICR-VGG16 [39] 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 |60.6
SelfTaught-VGG16 [17] 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6768.9 75.5 |56.1
WCCN-VGG16 [7] 25.6 53.7 67.4 774 26.8 49.1 68.1 27.9 64.5 55.7 |56.7
SGWSOD-VGG16 [21] 29.5 58.0 67.3 84.5 41.5 49.0 78.1 60.3 62.8 78.9 |62.9
OICR-Ens [39] 45.2 419 73.8 89.6 18.9 56.0 74.2 62.1 73.0 77.4 |61.2
OICR-Ens+FRCNN [39] 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 |64.3

GAL300-VGG16+SSD* [33] [62.0 71.5 46.7 86.1 60.7 47.8 82.3 74.7 83.1 79.3 |68.1
ZLDN-VGG16+FRCNN™* [44]49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 |61.2
OICR-VGG16+FRCNN [39] [41.4 32.3 67.0 91.2 12.7 604 76.3 66.4 80.2 78.9 |62.6
Ours-3RL-VGG16 28.1 46.3 66.0 88.0 16.6 51.3 70.1 59.7 73.8 79.2 |61.3
Ours-3RL-VGG164+FRCNN |47.5 57.4 82.3 90.8 20.3 55.7 77.3 69.6 74.9 79.2 |66.7

ance and background. Also, detecting highly non-rigid objects (e.g. person) is
still challenging and limited to finding discriminative parts such as human faces.

6 Conclusion

We presented simple but effective regularization techniques with a graph-based
labeling method for weakly supervised object detection. The proposed regulariza-
tion algorithms—refinement layer reinitialization and labeling perturbation dur-
ing iterative training procedure—are helpful to avoid overfitting to local optima
by forgetting biased weights and diversifying pseudo-labels. A mode-seeking al-
gorithm on a graph of object proposals contributes to identifying multiple target
instances and improving detection accuracy. Our method illustrates outstanding
performances on PASCAL VOC 2007 and 2012 datasets compared to existing
state-of-the-art weakly supervised object detection techniques.
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Table 6. Comparison between the proposed algorithm and the existing ones on PAS-
CAL VOC 2012 dataset in terms of mAP (%) and CorLoc (%).

Method | mAP (%) | CorLoc (%)
WSDDN+context [18] 34.9 56.1
OICR-VGG16 [39] 37.9 62.1
SelfTaught-VGG16 [17] 38.3 58.8
WCCN-VGG16 [7] 37.9 -
SGWSOD-VGG16 [21] 39.6 62.9
SGWSOD-Ens [21] 106 64.2
OICR-Ens [39] 38.2 63.5
OICR-Ens+FRCNN [39] 42.5 65.6
ZLDN-VGG16+FRCNN™ [44] 42.9 61.5
GAL300-VGG16+SSD* [33] 43.1 67.2
Ours-3RL-VGG16 41.2 64.1
Ours-3RL-VGG16+FRCNN 44.1 68.5

Fig. 2. Qualitative examples on PASCAL VOC 2007 test set. Red boxes indicate de-
tection results from OICR [39] and green ones present our results.

N A

oplane’

!
anggan%rop‘gne <o

=

Fig. 3. Examples of failure cases. Our method is often confused with the objects with
similar appearances.
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