Excitation and fragmentation in high velocity C_nN⁺ - He collisions

T.Mahajan[†], T.Id Barkach^{*}, N.F.Aguirre[¤], M.Alcami[¤], M.Bonnin[†], M.Chabot^{*}, S.Diaz-Tendero[¤], F.Geslin^{*}, T.Hamelin^{*}, F.Hammache^{*}, C.Illescas[¤], A.Jallat^{*}, A.Jorge[¤], T.Launoy[§], T.K.C.Le[†], A.LePadellec[‡], F.Martin[¤], A.Meyer^{*}, L.Perrot^{*}, T.Pino[†], B.Pons[#], N. de Séréville^{*}, K.Béroff^{†1}

[†] Institut des Sciences Moléculaires d'Orsay, CNRS- Univ.Paris-Sud F-91406 Orsay, France

Institut de Physique Nucléaire d'Orsay, CNRS- Univ.Paris-Sud F-91405 Orsay, France

^aDepartamento de Quimica Universidad Autonoma de Madrid, 28049 Madrid, Spain

⁸Laboratoire de Chimie Quantique et Photophysique Univ Libre de Bruxelles, CP160/09 1050 Bruxelles, Belgium [‡]Institut de Recherche en Astrophysique et Planétologie, CNRS-INP Univ. Toulouse 3 F-31028 Toulouse, France

[#]CELIA Univ.Bordeaux CNRS UMR 5107 CEA 351 Cours de la Libération, 33405 Talence, France

Synopsis: We will present measurements and modeling for two aspects of the C_nN^+ - He collisions (n=1-3, v=2.25 a.u) : cross sections for electronic excitation processes and fragmentation branching ratios for the excited and ionized C_nN^{q+} molecules produced in the collision (q=-1,0,1,2-5).

The study of molecule-atom collisions is a difficult topic, both from the experimental and theoretical point of views. In the high velocity regime, mostly small molecular systems have been studied [1]. On the other hand, the so-called Independent Atom and Electron (IAE) model was applied recently with reasonable success to C_n^+ -He, Ar systems with state of the art CTMC and SCAOCC P(b) probabilities [2]. We will test this approach again in this work.

Fragmentation of the excited molecular system is another topic of interest. In high velocity collisions (τ_{coll} ~10⁻¹⁶s) it occurs well after the excitation and can be treated separately. The MMMC approach and its new more general version M3C [3] is dedicated to treatment of statistical fragmentation. The systems studied here belong typically to this class of fragmentation [4]. We will ultimately compare our experimental fragmentation branching ratios (BR) to predictions of this statistical approach.

Experiments have been performed at the Tandem accelerator in Orsay with beams of C_nN^+ molecular ions (n=1-3) of constant velocity v=2.25 a.u colliding with helium atoms. The setup is identical to the one described in [5] (see also Jallat et al, this conference). Briefly the setup allows to reconstruct, from fragments complete collection and identification in charge and mass, the charge q of the projectile after the collision, signature of the process. An example is given in Table 1 for the case of double electron capture (q=-1) in the C_2N^+ - He collision where contribution of various channels to the { C_2N^- } production is reported.

We will present two types of results. First experimental cross sections for various electronic processes will be presented and compared to predictions of the IAE + CTMC calculations. These calculations will use structure calculations for C_nN^+ systems that we performed. Second, fragmentation BR for C_nN^{q+} species with q=-1,0,1,2,3-5 will be presented. In addition to the fundamental aspects discussed before, these BR are also of interest in astrochemistry as already pointed out [6]. Note than C_nN species, on their neutral and anionic forms, have been detected in interstellar medium [7] and planetary atmospheres [8].

Table 1 Measured fragmentation BR of $\{C_2N^-\}$ species produced by double electron capture in the collision C_2N^+ - He (v=2.25 a.u).

Channel	Exp. BR	Error
$C_2 N^2$	0.40	0.04
$CN^{-} + C$	0.51	0.06
C - CN	0.07	0.02
$C_{2}^{-} + N$	≤0.01	
$C^{-} + C + N$	0.020	0.012

References

- [1] H.Luna et al PRA 93, 052705 2016
- [2] G.Labaigt et al JPB 48, 075201 2015
- [3] N.F. Aguirre et al JCTC to appear 2017
- [4] G. Martinet et al 93, 063401 2004
- [5] T. Launoy et al PRA 95, 022711 2017
- [6] *M. Chabot et al ApJ 771 :90 2013*
- [7] M.Agundez et al Chem. Tev 113, 8710 2013
- [8] V.Vuitton et al Planet. Space Sc. 57, 1558 2009

¹E-mail: <u>karine.beroff@u-psud.fr</u>