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Synopsis A formula [1] for determining the electronic stopping power and the transport cross section in electron-ion binary
collisions is derived from the induced density for spherically symmetric potentials using the partial-wave expansion. In contrast
to the previous one found in many textbooks, the present formula converges to the Bethe and Bloch stopping-power formulas
at high ion velocities and agrees rather well with experimental stopping-power data

The energy transfer between electrons and ions in
binary collisions has been studied for more than 100
years and was a subject of interest for many promi-
nent scientists, such as Bohr, Landau and Lindhard,
who first established the underlying physics. The
stopping power or force (dE/dz) is connected to the
transport cross-section by the following:
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where me is the electron mass, 〈...〉 stands for the
average over the electron velocities ~ve, ~v is the ion
velocity, and n0 is the undisturbed electron density.
Atomic units (a.u) and non-relativistic expressions
will be used throughout, unless stated otherwise.

Usually, calculations of the transport cross-
section σtr assume a central potential for the elec-
tron scattering at the ion and therefore make use of
the partial-wave expansion. Thus, σtr(k) can be ex-
pressed by phase shifts δ` at the relative speed v′, ac-
cording to
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However, the weakest point of the use this for-
mula with Yukawa potential is the asymptotic high-
velocity limit : it does not give the well-established

Bethe Formula
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but instead results in
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In this work, I demonstrate that a central potential (as
the Yukawa potential) and the corresponding partial-
wave analysis can still be used by replacing Eq.(2)
with the following one :
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which is not derived from the definition of transport
cross-section (from the momentum-transfer cross-
section) but rather from the retarding force acting on
the ion due to the induced charge density. The result-
ing stopping force gives the correct Bethe limit ac-
cording to Eq.(3) and, in addition, is consistent with
the full non-perturbative Bloch formula.
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