Photodissociation of sympathetically crystallized CaH⁺

Naoki Kimura^{*1} Masatoshi Kajita[†] Kunihiro Okada ^{*2}

* Department of Physics, Sophia University, Tokyo 102-8554, Japan

[†] National Institute of Information and Communications Technology, Tokyo 184-8795, Japan

Synopsis We demonstrated photodissociation of sympathetically crystallized CaH⁺ toward rovibrational spectroscopy by UV-UV or IR-UV double resonance. The photodissociation of CaH⁺ was successfully confirmed at $\lambda = 283-287$ nm.

Rovibrational precision spectroscopy on sympathetically crystallized molecular ions is expected to be an important tool for discussions of fundamental physical constants stabillity [?]. Especially, some precision measurements of vibrational transitions in diatomic hydrides have been proposed toward time variation detection of proton-electron mass ratio $\beta (= m_p / m_e)$ [?]. The vibrational transition of $X^{1}\Sigma(v,N) = (0,0) \rightarrow (1,0)$ in CaH⁺ is one of the candidates. Recentry, sympathetic cooling and spectroscopic studies of CaH⁺ have been demonstrated by several reserach groups [?] [?].

We have constructed a cryogenic linear Paul trap for rotational cooling of Coulomb crystallized CaH^+ [?] [?]. Now we are trying to observe the laser induced fluorescence (LIF) from internally cooled CaH^+ . Unfortunately, the transition wavelength to observe the LIF has not been experimentally determined yet. Therefore, as an alternative plan, we started a photodissociation experiment in order to determine the rovibrational constants. Here, we report on the photodissociation experiment of sympathetically crystalized CaH^+ toward rovibrational spectroscopy.

In Fig. (a-1), we show an observed LIF image from a laser cooled Ca⁺ crystal. As we demonstrated before, CaH⁺ ions can be generated by a laser induced chemical reaction of $Ca^+(^2P_{1/2}) + H_2$ CaH^+ + H. As shown in Fig. (a-2), generated CaH⁺ ions are sympathetically crystalized in a Ca⁺ crystal. The ion numbers of Ca⁺ and CaH⁺ are determined by comparing LIF image with simulation images obtained by molecular dynamics simulations [?]. In the photodissociation experiment, we irradiated a UV pulsed laser beam ($\lambda = 283-287$ nm) to a mixed Coulomb crystal. Theoretical calculation predicted that the photodissociation via the excited state of $1^{1}\Pi$ in CaH⁺ could occur [?]. As shown in Fig. (a-2) and (a-3), we successfully observed the photodissociation of sympathetically crystalized CaH⁺. Fig. (b) shows a decay curve of the number of CaH⁺ as a function of the laser irradiation time. A dissociation rate was determined to be $\gamma = 2.3(0.5) \times 10^{-2} \text{ s}^{-1}$ using a leastsquare fitting of a single exponential function to the data in Fig.b.

This work was supported by JPSJ KAKENHI Grant Number 15K13545 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Figure a. CCD images of mixed species Colomb crystals during CaH^+ generation and photodissociaition. The ion numbers of Ca^+ in (a-1) and CaH^+ in (a-2) are 450 and 64, respectively.

Figure b. A plot of the ion number of CaH⁺ as a function of the laser irradiation time.

References

- [1] X. Calmet et al., Eur. Phys. J. C 24, 639 (2002).
- [2] M. Kajita et al., J. Phys. B 42, 154022 (2009).
- [3] N. Kimura et al., Phys. Rev. A 83, 033422 (2011).
- [4] N. B. Khanyile et al., Nat. Commun. 6, 7825 (2015).
- [5] K. Okada *et al.*, J. Phys. Conf. Ser. 635, 032060 (2015).
- [6] M. Abe et al., Chem. Phys. Lett. 521, 31 35 (2012).

¹E-mail: n-kimura-brl@eagle.sophia.ac.jp

²E-mail: okada-k@sophia.ac.jp