Cold inelastic collisions of $He({}^{1}S)$ with the smallest astrophysical anion observed, $CN^{-}({}^{1}\Sigma^{+})$: an accurate quantum dynamical study.

Carelli F.*¹, Boese A.D.^{†2}, Gianturco F.A.^{*3}, Wester R.^{*4}

*Institute of Ion and Applied Physics, University of Innsbruck, Technickerstrasse 25, A-6020 Innsbruck, Austria [†]Institute of Chemistry, Karl-Franzens University of Graz, Heinrichstrasse 28, A-8010, Graz, Austria

Synopsis Accurate state-to-state rovibrational inelastic collisional cross sections involving the smallest molecular anion astronomically detected with $He({}^{1}S)$ based on two recently computed energy surfaces will be presented. A detailed comparison between the collisional findings provided either using a high-level of accuracy in the potential energy surface or taking advantage of the full-dimensional approach will be discussed.

In dense and dark regions of the interstellar medium, two-body inelastic collisions involving p-/o-H₂(${}^{1}\Sigma_{g}^{+}$) and He(${}^{1}S$) as projectiles are known to be crucial. They affect in fact the populations of the internal rovitational levels involved in the radiative transitions by which a given species can be observed and its abundance inferred. If collisions with He(${}^{1}S$) are not as important as those involving p-/o-H₂(${}^{1}\Sigma_{g}^{+}$) on the basis of their column densities ratio, the former however provide an interesting choice for testing theory and supporting experimental measurements [1, 2].

 $\text{CN}^{-}({}^{1}\Sigma^{+})$ is the smallest detected interstellar anion and to support the observations as well as to help to predict its abundance in interstellar regions other than the molecular envelope IRC+10216 where it has been observed, accurate inelastic collisional rate coefficients with the He({}^{1}\text{S}) and p-/o-H_{2}({}^{1}\Sigma_{g}^{+}) are essential [3].

Two potential energy surfaces for the ground electronic state of the CN⁻-He anionic van der Waals complex have been recently constructed [4]. The first describes the complex in the rigid-rotor approximation at the CCSD(T)/aug-cc-pV{5,6}Z (cp corrected) + \triangle CCSDT/cc-pV{T,Q}Z + \triangle CCSDT(Q)/cc-pVTZ + rel. CCSD(T)/aug-cc-pV{T,Q}Z-DK + corevalence CCSD(T)/aug-cc-pwCV{T,Q}Z level and shows a general accuracy of about 0.2/0.4 cm⁻¹. The second one is full-dimensional at the CCSD(T)/augcc-pV{5,6}Z (cp corrected) level and is averaged on the lowest anionic diatom vibrational wave functions. Assuming the system CN⁻-He as a prototype for polar negatively charged van der Waals complexes, a detailed comparison between the inelastic collisional findings obtained using either the full-dimensional approach or very high level of accuracy will be presented and discussed.

References

- [1] M. Costes, C. Naulin 2016 Chemical Science 7 2462
- [2] A. Faure, P. Jankowski, T. Stoecklin, K. Szalewicz 2016 Nature Scientific Reports 6 28449
- [3] M. Agundez, J. Cernicharo et al. 2010 Astron. & Astrophys. 517 L2
- [4] F. Carelli et al., in preparation

¹E-mail: Fabio.Carelli@uibk.ac.at

²E-mail: Adrian_Daniel.Boese@uni-graz.at

³E-mail: Francesco.Gianturco@uibk.ac.at

⁴E-mail: Roland.Wester@uibk.ac.at