Angle-resolved $e^- + C_{60}$ elastic scattering cross section versus Ramsauer minima in partial elastic scattering cross sections

V. K. Dolmatov$^1$, M. Ya. Amusia$^2$, L. V. Chernysheva$^3$

$^*$ Department of Physics and Earth Science, University of North Alabama, Florence, Alabama 35632, U.S.A.
$^1$ Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
$^2$ A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia

**Synopsis** Ramsauer-type minima in $e^- + C_{60}$ partial electron elastic scattering cross sections, brought about by $C_{60}$ polarization, and their exposition to light in the angle-differential scattering cross section are revealed and detailed.

Work [1], devoted to the study of electron elastic scattering off endofullerenes $A@C_{60}$, predicted the emergence of Ramsauer-type minima in partial scattering cross sections $\sigma_\ell$ with $\ell = s$, $p$, $d$ and $f$, due to polarization of $A@C_{60}$ by scattering electrons. The energy positions of the minima were somewhat different from one another. For this reason, they were unresolved in the total scattering cross section $\sigma_{\text{total}} = \sum \sigma_\ell$. However, there are good reasons to expect that the minima should be resolved in the angle-differential scattering cross section $\frac{d\sigma}{d\Omega}$, since the position of a minimum depends on the scattering angle. This constitutes the primary aim of the present work, namely, to investigate the extent to which Ramsauer minima in $\sigma_\ell$s might be exposed to light in $\frac{d\sigma}{d\Omega}$.

In the present paper, for the sake of simplicity, we focus on electron elastic scattering off an empty $C_{60}$, $e^- + C_{60}$. As in [1], we model $C_{60}$ by an attractive spherical potential $U_0(r)$ of certain depth $U_0$, inner radius $r_0$ and thickness $\Delta$. The impact of the polarization potential $V_{\text{pol}}(r)$ of $C_{60}$ on scattering electrons is taken into account in the framework of a static dipole-polarization approximation: $V_{\text{pol}}(r) \approx -\alpha/[2(r^2 + b^2)^2]$. Here, $\alpha$ is the static polarizability of $C_{60}$ and $b$ is a parameter of the order of $r_0$. Our model, thus, accounts for the motion of scattering electrons in the field of an effective potential $U_{\text{eff}}(r) = U_0(r) + V_{\text{pol}}(r)$.

Calculated partial $\sigma_8$ and $\frac{d\sigma}{d\Omega}$ at $80^\circ$ (the calculation accounted for fourteen partial waves, up to $\ell_{\text{max}} = 13$), as a case study, are depicted in Fig. 1 along with corresponding experimental data [2] borrowed from [3].

First, Fig. 1 demonstrates a reasonable qualitative and semi-quantitative agreement between theory and experiment. The utilized in the present work simple model is, thus, proven to be surprisingly usable.

Second, one can see from Fig. 1 that the positions of the Ramsauer minima in $\sigma_8$ ($\varepsilon \approx 0.25$ eV), $\sigma_d$ ($\varepsilon \approx 0.99$ eV) and $\sigma_f$ ($\varepsilon \approx 1.48$ eV) approximately (for reasons) match the positions of the first, second and third lower energy minima in $\frac{d\sigma}{d\Omega}$, respectively.

It is, thus, shown in the present work that (a) the simple model utilized in the present paper is usable and (b) the angle-differential cross section $\frac{d\sigma}{d\Omega}$ allows one to expose to light the existence of Ramsauer minima in electron scattering of partial electronic waves.

![Figure 1](image_url)

**Figure 1.** Top panel, calculated $\frac{d\sigma}{d\Omega}$ ($\theta = 80^\circ$, open circles - experiment [2]) and, bottom panel, partial $\sigma_8$s for $e^- + C_{60}$ elastic scattering. Parameters of the utilized model (in atomic units): $r_0 = 5.26$, $U_0 = -0.26$, $\Delta = 2.91$, and $\alpha = 850$.

V.K.D. acknowledges the financial support in the form of a travel grant from COAS, UNA.

**References**


---

$^1$E-mail: vkdolmatov@una.edu
$^2$E-mail: amusia@012.net.il
$^3$E-mail: larissa.chernysheva@mail.ioffe.ru