Angle-resolved $e^- + C_{60}$ elastic scattering cross section versus Ramsauer minima in partial elastic scattering cross sections

V. K. Dolmatov^{*1}, M. Ya. Amusia^{†‡2}, L. V. Chernysheva^{‡3}

* Department of Physics and Earth Science, University of North Alabama, Florence, Alabama 35632, U.S.A.

[†] Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

[‡] A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia

Synopsis Ramsauer-type minima in $e^- + C_{60}$ partial electron elastic scattering cross sections, brought about by C_{60} polarization, and their exposition to light in the angle-differential scattering cross section are revealed and detailed.

Work [1], devoted to the study of electron elastic scattering off endofullerenes $A@C_{60}$, predicted the emergence of Ramsauer-type minima in partial scattering cross sections σ_{ℓ} with $\ell = s$, p, d and f, due to polarization of $A@C_{60}$ by scattering electrons. The energy positions of the minima were somewhat different from one another. For this reason, they were unresolved in the total scattering cross section $\sigma_{\text{total}} = \sum \sigma_{\ell}$. However, there are good reasons to expect that the minima should be resolved in the angledifferential scattering cross section $\frac{d\sigma}{d\Omega}$, since the position of a minimum depends on the scattering angle. This constitutes the primary aim of the present work, namely, to investigate the extent to which Ramsauer minima in σ_{ℓ} s might be exposed to light in $\frac{d\sigma}{d\Omega}$.

In the present paper, for the sake of simplicity, we focus on electron elastic scattering off an empty C_{60} , $e^- + C_{60}$. As in [1], we model C_{60} by an attractive spherical potential $U_c(r)$ of certain depth U_0 , inner radius r_0 and thickness Δ . The impact of the polarization potential $V_{pol}(r)$ of C_{60} on scattering electrons is taken into account in the framework of a static dipole-polarization approximation: $V_{pol}(r) \approx -\alpha/[2(r^2 + b^2)^2]$. Here, α is the static polarizability of C_{60} and *b* is a parameter of the order of r_0 . Our model, thus, accounts for the motion of scattering electrons in the field of an effective potential $U_{eff}(r) = U_c(r) + V_{pol}(r)$.

Calculated partial σ_{ℓ} s and $\frac{d\sigma}{d\Omega}$ at 80° (the calculation accounted for fourteen partial waves, up to $\ell_{\text{max}} = 13$), as a case study, are depicted in Fig. 1 along with corresponding experimental data [2] borrowed from [3].

First, Fig. 1 demonstrates a reasonable qualitative and semi-quantitative agreement between theory and experiment. The utilized in the present work simple approximation is, thus, proven to be surprisingly usable.

Second, one can see from Fig. 1 that the positions of the Ramsauer minima in σ_s ($\varepsilon \approx 0.25 \text{ eV}$), σ_d

 $(\varepsilon \approx 0.99 \text{ eV})$ and σ_f ($\varepsilon \approx 1.48 \text{ eV}$) approximately (for reasons) match the positions of the first, second and third lower energy minima in $\frac{d\sigma}{d\Omega}$, respectively.

It is, thus, shown in the present work that (a) the simple model utilized in the present paper is usable and (b) the angle-differential cross section $\frac{d\sigma}{d\Omega}$ allows one to expose to light the existence of Ramsauer minima in electron scattering of partial electronic waves.

Figure 1. Top panel, calculated $\frac{d\sigma}{d\Omega}$ ($\theta = 80^{\circ}$, open circles - experiment [2]) and, bottom panel, partial σ_{ℓ} s for $e^- + C_{60}$ elastic scattering. Parameters of the utilized model (in atomic units): $r_0 = 5.26$, $U_0 = -0.26$, $\Delta = 2.91$, and $\alpha = 850$.

V.K.D. acknowledges the financial support in the form of a travel grant from COAS, UNA.

References

- [1] V. K. Dolmatov et al. 2017 Phys. Rev. A 95 012709
- [2] H. Tanaka et al. 1994 J. Phys. Soc. Japan 63 485
- [3] F. A. Gianturco et al. 1999 J. Phys. B 32 2181

¹E-mail: vkdolmatov@una.edu

²E-mail: amusia@012.net.il

³E-mail: larissa.chernysheva@mail.ioffe.ru