Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions

Song Bin Zhang*¹, Yong Wu^{† 2}, and Jian Guo Wang[†]

* School of Physics and Information Technology, Shaanxi Normal University, 710119 Xi'an, China † Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China

Synopsis The method of time-dependent quantum wave packet dynamics has been successfully extended to study charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with multiconfiguration time-dependent Hartree method and the modulo squares of *S*-matrix is extracted from the wave packet by the flux operator with complex absorbing potential method (FCAP). The calculations of charge transfer process $1^{2}\Sigma^{+}$ H⁻($1s^{2}$)+Li($1s^{2}2s$) $\rightarrow 2^{2}\Sigma^{+}/3^{2}\Sigma^{+}/1^{2}\Pi$ H(1s)+Li⁻($1s^{2}2s2l$) (l = s, p) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling (QMOCC) very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.

FIG. 1. $1^{2}\Sigma^{+} \rightarrow 2^{2}\Sigma^{+}$ reaction probability $|S|_{1\rightarrow2}^{2}$ for $J_{0}=0$ and 1 as a function of incident energy. The thin line shows the results from QMOCC calculations, the dot line shows the present FCAP calculations ($p_{0}=9.2$ a.u., $\sigma=0.3$ a.u., $T_{p}=2$ ps).

Fig. 2. Reaction probabilities $|S|_{1\rightarrow2}^2$, $|S|_{1\rightarrow3}^2$ and $|S|_{1\rightarrow4}^2$ for $J_0=50$. The thin line and bold line show the results from QMOCC and FCAP ($p_0=11.0$ a.u., $\sigma=0.7$ a.u., $T_p=2$ ps), respectively.

References

[1] S. B. Zhang, Y. Wu, and J. G. Wang, J. Chem. Phys. **145**, 224306 (2016)

¹E-mail: song-bin.zhang@snnu.edu.cn

² E-mail: wu_yong@iapcm.ac.cn