RISK FACTORS FOR FOOT ULCERATION IN ADULTS WITH ESRD ON DIALYSIS

Dr Michelle Kaminski
BPod (Hons), PhD
Discipline of Podiatry
School of Allied Health
College of Science, Health and Engineering
La Trobe University, Melbourne
Declaration of Financial Interests or Relationships

Speaker Name: Dr Michelle Kaminski
I have no financial interest or relationship(s) to disclose.
ACKNOWLEDGEMENTS

PhD supervisors
A/Prof Karl B Landorf
Dr Anita Raspovic
Prof Lawrence P McMahon

Co-authors
A/Prof Bircan Erbas
Miss Katrina A Lambert
Dr Peter F Mount
Prof Peter G Kerr
WHAT IS END-STAGE RENAL DISEASE (ESRD)?

- Chronic medical condition - significant loss of kidney function
- Dialysis or kidney transplant required for survival
- Dialysis removes metabolic waste products, water and toxic substances
- Leading causes of ESRD in Australia:
 - Diabetes mellitus (35%)
 - Nephritis (19%)
 - Hypertension (14%)
• High prevalence of foot ulceration (14.4%) and amputation (5.9%)
• Detrimental impact and financial burden
• Poor foot salvage and prognosis
• One and five year survival rates following a lower extremity amputation:
 • Haemodialysis (50.8%, 17.2%)
 • Moderate to severe CKD (76.6%, 40.9%)
 • Mild or no CKD (85.6%, 60.3%)
• There is limited high-quality evidence for the risk factors for foot ulceration

• Large multi-centre prospective cohort studies are needed
To investigate the risk factors for foot ulceration in adults with ESRD on dialysis
METHODS

- Multi-centre prospective observational cohort study
- 450 participants recruited

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESRD and clinically stable on dialysis (haemodialysis or peritoneal dialysis)</td>
<td>Insufficient English skills to provide informed consent or follow instructions during the project</td>
</tr>
<tr>
<td>≥18 years of age</td>
<td>Unwilling or unable to give informed consent to participate</td>
</tr>
<tr>
<td>Cognitively aware (i.e. to provide informed consent)</td>
<td></td>
</tr>
</tbody>
</table>
STUDY FLOW

RECRUITMENT

- **Home-based participants**
 - Telephone screening

- **Satellite participants**
 - Face-to-face screening

SCREENING FOR ELIGIBILITY

- **BASELINE APPOINTMENT**
 - Interview
 - Review of medical record/blood tests
 - Health-status questionnaire
 - Foot assessment

FOLLOW-UP APPOINTMENT

- **(12 MONTHS)**
 - Evaluation of primary and secondary outcomes

RELIABILITY STUDY

- Additional foot assessment (1 week after baseline appointment)
DATA COLLECTION

- Participant characteristics
- Dialysis-related variables
- Comorbidities
- Blood results
- Foot complications
- Foot-health care behaviours
- Health status questionnaire
- Foot examination
NEUROLOGICAL ASSESSMENT

• Protective sensation (Semmes-Weinstein 5.07/10g monofilament)

• Vibration perception threshold (Neurothesiometer)
ARTERIAL ASSESSMENT

- Palpation of pedal pulses
- Ankle-brachial pressure index
- Toe-brachial pressure index (Systoe® automated system)
BIOMECHANICAL/FOOTWEAR ASSESSMENT

• 1st metatarsophalangeal joint (MTPJ) range of motion
• Peak plantar pressures (TekScan® MatScan system)
• Foot deformity
• Footwear (fit, type, condition)
Skin and nail pathology

• Corns/calluses
• Uraemic pruritus (itchy skin)
• Xerosis (dry skin)
• Calciphylaxis
• Onychomycosis (fungal nail)
• Onychocryptosis (ingrown nail)
• Onychauxis (thickened nail)
<table>
<thead>
<tr>
<th>Primary outcome</th>
<th>Secondary outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot ulceration</td>
<td>Number and time to onset of foot ulceration</td>
</tr>
<tr>
<td></td>
<td>Lower extremity amputations</td>
</tr>
<tr>
<td></td>
<td>Episodes of infection</td>
</tr>
<tr>
<td></td>
<td>Foot-related hospitalisations</td>
</tr>
<tr>
<td></td>
<td>Revascularisation procedures</td>
</tr>
<tr>
<td></td>
<td>Kidney transplantation</td>
</tr>
<tr>
<td></td>
<td>Mortality</td>
</tr>
</tbody>
</table>
• Cox proportional hazards analysis

• Multinomial logistic regression

• Risk estimates presented as HR, RR, OR (depending on model) and 95% CIs
RESULTS: BASELINE

Participant characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n = 450)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age ± SD, years</td>
<td>67.5 ± 13.2</td>
</tr>
<tr>
<td>Male, n(%)</td>
<td>64.7</td>
</tr>
<tr>
<td>Smoker, n(%)</td>
<td>12.0</td>
</tr>
<tr>
<td>Mean body mass index ± SD, kg/m²</td>
<td>28.2 ± 6.6</td>
</tr>
<tr>
<td>Living alone, n(%)</td>
<td>16.7</td>
</tr>
<tr>
<td>Haemodialysis, n(%)</td>
<td>94.0</td>
</tr>
<tr>
<td>Peritoneal dialysis, n(%)</td>
<td>6.0</td>
</tr>
<tr>
<td>Median dialysis duration (IQR), months</td>
<td>37 (17 to 70)</td>
</tr>
<tr>
<td>Diabetes mellitus, n(%)</td>
<td>50.2</td>
</tr>
<tr>
<td>Mean diabetes duration ± SD, months</td>
<td>256 ± 153</td>
</tr>
</tbody>
</table>

Foot examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Total (n = 450)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral neuropathy, n(%)</td>
<td>50.7</td>
</tr>
<tr>
<td>Peripheral arterial disease, n(%)</td>
<td>52.4</td>
</tr>
<tr>
<td>Arterial calcification, n(%)</td>
<td>40.9</td>
</tr>
<tr>
<td>Limited 1st MTPJ range of motion, n(%)</td>
<td>93.6</td>
</tr>
<tr>
<td>Foot deformity, n(%)</td>
<td>75.8</td>
</tr>
<tr>
<td>Skin pathology, n(%)</td>
<td>87.8</td>
</tr>
<tr>
<td>Nail pathology, n(%)</td>
<td>70.9</td>
</tr>
<tr>
<td>Inappropriate/ill-fitting footwear, n(%)</td>
<td>66.0</td>
</tr>
<tr>
<td>Poor foot-health care behaviours, n(%)</td>
<td>30.2</td>
</tr>
<tr>
<td>Podiatry attendance (last 12 months), n(%)</td>
<td>49.6</td>
</tr>
</tbody>
</table>
RESULTS: PRIMARY OUTCOME

FOOT ULCERATION

• 81 participants (18%)

• 211 foot ulcers (200 new, 11 reoccurring)

• Majority located on the toes (61%)

• Time to onset 164 ± 127 days

• Annual incidence 122 per 1,000 person-years
RESULTS: SECONDARY OUTCOMES

LOWER EXTREMITY AMPUTATION

• 12 participants (2.7%)

• 20 amputations (18 minor, 2 major)

• Reason for amputation: PAD/gangrene (45%), infected foot ulcer (40%), osteomyelitis (15%)
RESULTS: SECONDARY OUTCOMES cont...

EPISODES OF INFECTION

- 96 participants (21.3%), 182 episodes
- Common infections: cellulitis (10.9%), local wound infection (8.2%), osteomyelitis (5.3%)

REVASCULARISATION PROCEDURES

- 24 participants (5.3%), 42 procedures
- 81% angioplasties
RESULTS: SECONDARY OUTCOMES cont...

FOOT-RELATED HOSPITAL ADMISSIONS
- 42 participants (9.3%)
- 74 admissions
- Length of stay 25 ± 23 days
- Admitted due to infected foot ulcer (28.4%)

KIDNEY TRANSPLANT
- 30 participants (6.7%)
RESULTS: SECONDARY OUTCOMES cont...

ALL-CAUSE MORTALITY

- 52 participants (11.6%)
- Common causes: myocardial infarction (23.1%), withdrawal from dialysis (15.4%), pneumonia (15.4%)

FOOT-RELATED MORTALITY (n = 6)

- Sepsis secondary to infected foot ulcer (n = 5)
- Due to complications of PAD (n = 1)
RESULTS: RISK FACTORS

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Hazard ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral neuropathy</td>
<td>3.02 (1.48 to 6.15)</td>
<td>0.002*</td>
</tr>
<tr>
<td>Previous foot ulceration</td>
<td>2.86 (1.53 to 5.34)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>1.82 (0.98 to 3.36)</td>
<td>0.057</td>
</tr>
</tbody>
</table>
Results: Risk Factors

<table>
<thead>
<tr>
<th>Category</th>
<th>N</th>
<th>Risk factor</th>
<th>Relative Risk (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never ulcerated</td>
<td></td>
<td>Reference Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New foot ulceration</td>
<td>27</td>
<td>Diabetes mellitus</td>
<td>0.68 (0.28, 1.63)</td>
<td>0.388</td>
</tr>
<tr>
<td>(no past/baseline ulcer)</td>
<td></td>
<td>Peripheral neuropathy</td>
<td>2.66 (1.04, 6.82)</td>
<td>0.040*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripheral arterial disease</td>
<td>0.58 (0.24, 1.41)</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cerebrovascular disease</td>
<td>1.37 (0.54, 3.50)</td>
<td>0.511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nail pathology</td>
<td>3.85 (1.08, 13.75)</td>
<td>0.038*</td>
</tr>
<tr>
<td>New foot ulceration</td>
<td>54</td>
<td>Diabetes mellitus</td>
<td>1.84 (0.75, 4.48)</td>
<td>0.180</td>
</tr>
<tr>
<td>(past/baseline ulcer)</td>
<td></td>
<td>Peripheral neuropathy</td>
<td>11.23 (3.16, 39.87)</td>
<td><0.001**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripheral arterial disease</td>
<td>7.15 (2.24, 22.82)</td>
<td>0.001**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cerebrovascular disease</td>
<td>2.08 (1.04, 4.16)</td>
<td>0.037*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nail pathology</td>
<td>1.02 (0.43, 2.45)</td>
<td>0.953</td>
</tr>
</tbody>
</table>
• Peripheral neuropathy and previous foot ulceration are major risk factors for foot ulceration.

• Nail pathology and neuropathy are risk factors in those without history of ulceration.

• Neuropathy, peripheral arterial disease and cerebrovascular disease are risk factors in those with history of ulceration.

• Diabetes is not a primary or significant risk factor, as other comorbidities (such as neuropathy and peripheral arterial disease) have stronger associations with ulceration.
CLINICAL IMPLICATIONS

• First study to identify longitudinal risk estimates for foot ulceration in a large dialysis cohort
• Clearer understanding of risk factors and identification of those at the highest risk
• Highlights a clear need for foot care provision to dialysis patients
• Risk factors identified may help to reduce the incidence of foot ulceration and its associated complications
FUTURE RESEARCH

• Direct health care prioritisation - develop prevention and early treatment programs

• Inform the design of randomised clinical trials that target the risk factors for ulceration in the dialysis population
CONCLUSION

• There is a high prevalence and incidence of foot ulceration
• Peripheral neuropathy and previous foot ulceration are major risk factors
• Risk factors differ between those with and without a history of ulceration
• Diabetes is not a significant risk factor on its own
• These findings should help reduce the incidence of foot ulceration and its associated complications
THANK YOU

Dr Michelle Kaminski

m.kaminski@latrobe.edu.au

La Trobe Podiatry
@LTPodiatry
RELIABILITY STUDY

• 20 participants recruited
• Foot assessment on 2 separate occasions (one week apart)
• Intra-examiner reliability for the monofilament, neurothesiometer, palpation of pedal pulses, ABPI, TBPI, 1st MTPJ ROM tests

RESULTS

• ICCs ranged between 0.87 and 0.99
• All weighted kappa values equalled 1.00 (absolute % agreement ranged from 95 to 100%)