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Synopsis We have developed an ab initio method for computing photon-atom scattering cross-sections in a single-shot calcu-

lation. Our method uses pseudostate information to compute the complex transition polarisabilities and the Rayleigh, Raman,

Compton and photoionisation cross-sections for atomic hydrogen. Our method is simple and intuitive and can easily be adapted

to higher-order scattering processes and other atoms. We also present the low energy scattering cross-sections of helium.

We present a quantitative description of the

second-order photon-hydrogen scattering processes

involving the absorption and emission of one pho-

ton. We introduce a method that allows us to compute

the cross-sections of the Rayleigh, Raman, Compton

and photoionisation process using complex transition

polarisabilities. These scattering cross-sections have

applications in fields such as astrophysics [1] or high-

precision AMO experiments [2].

Rayleigh scattering refers to the elastic scattering

process where a photon of frequency ω is absorbed

and emitted. Raman and Compton scattering are in-

elastic processes where a photon of frequency ω is

absorbed and a frequency of ω
′ is emitted. In the case

of Raman scattering, the final state is a bound state

that is not the initial state, whilst Compton scattering

ionises the atom (final state is in the continuum).

Our method uses configuration interaction and an

atom-in-a-box approach. As a result, the continuum

is discretized and described by a set of discrete, pos-

itive energy states that we refer to as ‘pseudostates’.

These pseudostates allow us to compute the complex

transition polarisabilities above the ionisation thresh-

old, and allows us to avoid the infra-red divergence

in the Compton cross-section calculation.

The complex transition polarisabilities are given

by the Kramers-Heisenberg matrix elements and de-

scribe the process where an atom initially in state i

transitions to state j through the absorption and emis-

sion of a photon. It should be noted that the tran-

sition polarisability has two imaginary terms where

Im0[αi j(ω)] is related to the linewidth of each state

and Im1[αi j(ω)] to the photoionisation. These com-

plex transition polarisabilities are used to compute

the second order scattering cross-sections, which are

presented in Fig. 1 for atomic hydrogen.

Our cross-sections for Rayleigh and Raman tran-

sitions are in agreement with previous work, and the

cross-sections in Figure 1 agree qualitatively with the

scattering cross-sections from the FFAST database.

However, our Compton cross-section is up to three

orders of magnitude larger than previous results by

Bergstrom et al. [3] and Drukarev et al. [4]. We

have been able to resolve this large discrepancy by

considering the contributions to the cross-section by

states of different angular momentum and comparing

the Compton differential cross-sections [5].
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Figure 1. Plot of benchmark cross-sections for a

photon scattered by atomic hydrogen, relative to

the Thomson scattering cross-section σT . Various

scattering cross-sections from the NIST databases

(http://www.nist.gov/pml/data/) are also shown.

Our computational method has the advantage of

being extremely versatile, as it can be extended to any

atom in any initial state as well as to higher-order

scattering processes. We will present the second-

order hyperpolarisability at frequencies below and

above the first ionisation threshold as well.
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