Measurement of angular distributions of K x-ray intensity of Ti and Cu thick targets following impact of 10-25 keV electrons

Bhupendra Singh¹, Sunil Kumar¹, Suman Prajapat¹, Bhartendu K. Singh¹, Xavier Llovet² and R. Shanker¹*

¹Atomic Physics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005, India
²Scientific and Technological Centers, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona, Spain

We present new results on angular distributions of the relative intensity of Kα and Kβ x-ray lines of thick targets of Ti (Z=22) and Cu (Z=29) pure elements following impact of 10-25keV electrons. The angular measurements of the K x-radiations were accomplished by rotating the target surface with respect to the electron beam direction. The x-rays emerging from the target surface in reflection mode were detected by an energy dispersive Si P-I-N photodiode detector. The resulting variation of the relative intensity of the characteristic lines as a function of angle of detection and impact energy has been found to be anisotropic and it is considered to arise due to change in path lengths at a given incidence angle α for the photons generated by direct as well as by indirect K shell ionization processes. The measured angular variations of relative intensity of Kα and Kβ x-ray lines of both targets are found to increase by about 60-70% in going from θ =105° to 165° at a given impact energy; however there is a slight indication of impact energy dependence of Cu Kα x-ray line as also noted by the earlier workers. We compare the experimental results with those obtained by Monte Carlo simulations using PENELOPE calculations; the agreement between experiment and theory is found to be satisfactory within uncertainties involved in the measurements and the theoretical results.

Figure 1: Variation of relative intensities I(θ)/I(135°) for Kα and Kβ x-ray lines of Ti excited by electrons at 25keV and that of Cu at 20keV impact energies as a function of photon detection angle θ. (a) Ti Kα; (b) Ti Kβ; (c) Cu Kα; (d) Cu Kβ. The filled squares are the experimental data points whereas open circles connected with a continuous line represent the data from MC calculations. Typical error bars are shown on the experimental data points.

References
[3] B. Singh et.al. (Accepted, Journal of Electron Spectroscopy and Related Phenomena 2107)

*E-mail: shankerorama@gmail.com