Synthesis of antihydrogen with adiabatically transported cold antiprotons

Naofumi Kuroda^{al}, Minori Tajima^{a,b}, Yugo Nagata^c, Horst Breuker^d, Pierre Dupré^b,

Tatsuhito Kobayashi^a, Volkhard Mäckel^e, Takuya Matsudate^a, Hiroyuki A. Torii^a, Horoyuki Higaki^f, Yasuyuki Kanai^b, Yasuyuki Matsuda^a, Stefan Ulmer^g, and Yasunori Yamazaki^b

^a Institute of Physics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan

^b Atomic Physics Research Unit, RIKEN, Hirosawa, Wako-shi, 351-0198 Saitama, Japan

^c Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho, Koganei-shi, 184-8588

Tokyo, Japan

^d CERN, 1211 Genève, Switzerland

^e Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Wien 1090, Austria

^f Graduate Schoole of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8530

Hiroshima, Japan

g Ulmer Initiative Research Unit, RIKEN, Hirosawa, Wako-shi, 351-0198 Saitama, Japan

Synopsis A double cusp trap for atomic beam spectroscopy of the hyperfine splitting of antihydrogen has been developed. Synthesis of antihydrogen atoms was studied by directly injecting antiproton beams with a narrow energy width into a positron plasma in the double cusp trap. Within 0.7 s, about 60% of all antihydrogen events were localized which is expected to contribute to a better signal-to-noise ratio in our planned antihydrogen spectroscopy experiments.

The ASACUSA collaboration has been developing a Rabi-like method for atomic beam spectroscopy of hyperfine splitting of antihydrogen (\bar{H}) atoms to test CPT symmetry[1]. A cusp like magnetic field configuration produced by an anti-Helmholtz coil has been utilized to provide spin-polarized \bar{H} beams[2, 3]. Production and detection of an \bar{H} beam were successfully demonstrated[4].

A double cusp trap which consists of two sets of anti-Helmholtz coils and a stack of multiple ring electrode has been developed to increase the intensity and the spin-polarization of \bar{H} beams. For an efficient \bar{H} production, we have also developed an adiabatic transport of antiprotons (\bar{ps})[5].

Antihydrogen atoms were synthesized by directly injecting a \bar{p} beam into a positron plasma stored in the double cusp trap, which was monitored by using a field-ionization well (FIW). Antihydrogen atoms in high Rydberg states were field ionized and their $\bar{p}s$ were accumulated in the FIW. The $\bar{p}s$ were released from time to time and detected by surrounding scintillators. Figure 1 shows the time evolution of the rate of field ionized \bar{p} s which was measured for nonadiabatic and adiabatic transportation of \bar{p} beams, respectively. In the non-adiabatic case, only 35% of events were counted within the first 0.7 s and the second peak could be recognized around 5 s. Although the time profile in the adiabatic case, that is, a sharp peak at the beginning followed by long and continuous H production, was similar, the second peak disappeared, which implies a less heating of positron plasma. About 60% of antihydrogen events were temporally localized within the first 0.7 s. The high initial production rate of \bar{H} improves the signal-tonoise ratio of a detector at the end of our spectrometer line.

Figure 1. The rate of antihydrogen atoms which fieldionized during the time interval shown by the width of the histogram for adiabatic(solid circle) and a nonadiabatic (open circle) transportation.

References

- E. Widmann *et al.* 2001 *The Hydrogen Atom Lecture Notes in Physics* ed S. Karshenboim et al. (Berlin:Springer) **570** 528
- [2] A. Mohri and Y. Yamazaki 2003 Europhys. Lett. 63 207
- [3] Y. Nagata and Y. Yamazaki 2014 New J. Phys. 16 083026
- [4] N. Kuroda et al. 2014 Nat. Commun. 5 3089
- [5] M. Tajima et al. 2017 ICPEAC XXX abstract

¹E-mail: kuroda@phys.c.u-tokyo.ac.jp