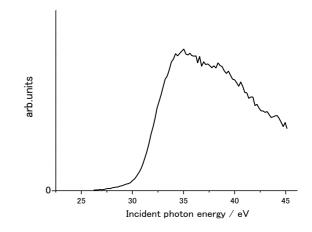
## Cross sections for the formation of H(2p) atom via doubly excited states in photoexcitation of rotationally cold H<sub>2</sub> Y. Abe<sup>\*1</sup>, T. Odagiri<sup>\*2</sup>, S. Ohrui<sup>\*</sup>, T. Taniguchi<sup>\*</sup>, T. Shiratori<sup>\*</sup>, M. Kaida<sup>\*</sup>, K. Yachi<sup>†</sup>, Y. Kumagai<sup>†</sup>, K. Hosaka<sup>†</sup>, M. Kitajima<sup>†</sup>, and N. Kouchi<sup>†</sup>

\*Dept. of Materials and Life Sciences, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan

<sup>†</sup>Dept. of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan


**Synopsis** Cross sections for the formation of H(2p) atom in photoexcitation were measured for H<sub>2</sub> in the lowest rotational level in the energy range of the doubly excited states for examining contribution of the non-adiabatic transition between the  ${}^{1}\Sigma_{u} - {}^{1}\Pi_{u}$  doubly excited states.

Competing decay of doubly excited states of H<sub>2</sub> been theoretically and experimentally has investigated [1]. Recently, it was found that the nonadiabatic transition would play a role in the dissociation of the  $Q_2^{\ 1}\Pi_u$  doubly excited states of  $H_2$  and  $D_2$  [2,3]. In the present study, we measured cross sections for the formation of H(2p) fragment in photoexcitation of para-H<sub>2</sub> in the lowest rotational level, J'' = 0, for a detailed piece of information against the non-adiabatic transition. Only the  ${}^{1}\Pi_{u}^{+}$ states as well as the  ${}^{1}\Sigma^{+}_{\mu}$  states are populated in photoexcitation from the lowest rotational level of the  ${}^{1}\Sigma_{a}^{+}$  ground state [4]. On the other hand, many rotational level (J'' = 0, 1, 2, 3) are involved for ordinary-H<sub>2</sub> at room temperature and all the dipole allowed states  $({}^{1}\Pi_{u}^{\pm}$  and  ${}^{1}\Sigma_{u}^{+})$  can be formed in photoexcitation. It is thus expected that the cross section for the rotationally cold H<sub>2</sub> could be different from those for ordinary-H<sub>2</sub> since the  ${}^{1}\Pi^{\pm}_{\mu}$  states interact with the  ${}^{1}\Sigma_{u}^{+}$  states differently with each other due to the Kronig's selection rule [4].

The experiments were carried out at BL20A of the photon factory, KEK. A gas of  $H_2$  in the lowest rotational level was obtained by a cryogenic orthopara hydrogen converter. The gas cell was kept at approximately -186°C by using liquid-N<sub>2</sub> during the measurement. The rotational distribution in the sample was checked through measuring highresolution photo-ion yield spectra.

Figure 1 shows the cross sections for the formation of H(2p) fragment for  $H_2$  in the lowest rotational level, J'' = 0. The shape of the cross

section curve agrees with that for ordinary- $H_2$  at room temperature within the statistical uncertainty.



**Figure 1**. Cross sections for the formation of H(2p) fragment in photoexcitation of  $H_2$  in the lowest rotational level

## References

N. Kouchi *et al.*, J. Phys. B **30**, 2319(1997); M.Glassaujean and H. Schmoranzer, J. Phys. B **38**, 1093(2005)
T. Odagiri *et al.*, Phys. Rev. A **84**, 053401 (2011)
K. Hosaka *et al.*, Phys. Rev. A **93**, 063423 (2016)
G. Herzberg, Molecular spectra and molecular

structure: I. Spectra of Diatomic molecules (New York: Van Nostrand)

<sup>&</sup>lt;sup>1</sup> E-mail: yuta-abe.64@eagle.sophia.ac.jp

<sup>&</sup>lt;sup>2</sup> E-mail: odagiri.t@sophia.ac.jp