A new generation of room-temperature electron-beam ion traps with straight-through, on-axis optical access

Sven Bernitt^{*,‡}, Klaus Blaum^{*}, Lisa F Buchauer^{*}, Thore M Bücking^{*}, André Cieluch^{*}, Alexander Egl^{*}, James R Harries[¶], Sandro Kraemer^{*}, Steffen Kühn^{*}, Peter Micke^{*,†}, Rima X Schüssler^{*}, Christoph Schweiger^{*}, Sven Sturm^{*}, Robert N Wolf^{*}, José R. Crespo López-Urrutia^{*}

*Max-Planck Institut für Kernphysik, Heidelberg, Germany, [†]Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, [‡]Friedrich-Schiller-Universität Jena, Germnay, [¶]QST Harima, SPring-8, Japan

Synopsis A series of permanent-magnet electron-beam ion traps is being developed for applications such as a source of ions for precision spectroscopy in low-temperature traps, and studies at synchrotron radiation and X-ray free-electron laser beamlines.

EBITs (Electron-Beam Ion Traps) are a standard tool for the production and study of highlycharged ions (HCI). State-of-the-art devices use superconducting magnets to strongly compress a highcurrent electron beam and can create and trap almost any charge state of almost any element. However these are large instruments and there is a demand for smaller, more economical devices which can be used when ions in intermediate charge states are of interest - for example for extraction and trapping in precision Penning or Paul traps for measurements at low temperatures. A further development is to allow straightthrough, on-axis access to the trapped ions, to improve access for, for example, a beam of synchrotron radiation or from a laboratory or free-electron laser lightsource.

To this end we have developed a new generation of room-temperature EBITs which use

Figure 1. Cross-section schematic of a permanentmagnet EBIT with an off-axis electron gun.

NdFeB magnets, combined with soft iron or permendur pole pieces to generate magnetic fields of up to 1 T at the trap centre. Using an on-axis electron gun beam currents of the order of 50 mA over the energy range of 1 keV to 8 keV have been demonstrated, with 25 mA achieved for the off-axis gun.

Figure 1 shows a cross-section schematic of one of the new EBITs in a plane through the trap centre and containing the electron-beam axis, with the offaxis electron gun on the left (cathode shown in yellow) and the collector/extraction optics on the right.

Figure 2 shows example X-ray emission data recorded using the off-axis electron gun EBIT, with electron impact on neutral argon gas providing a source of HCI, and emitted X-rays detected using a solid-state detector. The spectra reveal emission from recombination processes in highly-charged argon ions, demonstrating the efficient operation of the device.

Figure 2. X-ray spectra recorded from highly-charged argon ions in the off-axis trap.

¹E-mail: harries@spring8.or.jp