Stereodynamics of asymmetric ion-pair formation in collisions of highly-charged ions with rare gas dimers

Tomoko Ohyama-Yamaguchi*l and Atsushi Ichimura^{†2}

* Tokyo Metropolitan College of Industrial Technology, Shinagawa, Tokyo 140-0011, Japan

[†] Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210, Japan

Synopsis Stereodyanamical effects are analyzed for multiple ionization of rare gas dimers by slow highly charged ions using the three-center Coulombic over-barrier model previously developed by the present authors.

More than ten years ago, we proposed a threecenter Coulombic over-barrier model to describe sequential multiple ionization of a rare gas dimer BC collided by a slow highly charged ion A^{q+} [1]. In more recent works [2, 3], we modified the model so as to introduce the effect of partial screening during a collision for non-active target atomic site (either B or C) and also for projectile site (A) in respective steps of electron removal. The model predicts the population distribution over charge-states (Q, Q') of dissociating ion pairs just after the collision. Measured result [4, 5] of the ion pair distribution in $Ar^{9+} + Ar_2$ collisisons was reasonably reproduced in the model by taking a screening parameter as $s = 0.3 \sim 0.4$ [3].

In the present work, stereodynamical effects are examined in relation to the screening effect. We have calculated the ion pair formation cross sections as a function of the orientation angle, $\cos \theta = \hat{d} \cdot \hat{v}$, where d denotes a molecular axis vector from C to B with v being the projectile beam velocity. In addition, to obtain a physical insight more clearly, we introduce a pair of atomic impact parameters b_B and b_C respectively defined as the vertical distances from sites B and C to the incident trajectory (see Fig.1). Hence, we distinguish the *near* and *far* sites; thereby discuss the ion-pair formation cross section $\sigma(Q_{near}, Q_{far})$. The near and far sites would be determined through the measurement of momentum transfer.

Figure 2 shows the angular dependence of the cross sections $\sigma(Q_{\text{near}}, Q_{\text{far}})$ for $(Q_{\text{near}}, Q_{\text{far}}) = (2,1)$, (1,2), (3,2), and (2,3). It is seen from the figure that the (2,1) population overwhelms (1,2), and similarly (3,2) overwhelms (2,3). All the curves in the figure are symmetric with respect to $\cos \theta$. We see two maxima in (2,1) and (3,2) cross sections, and two cusps in (1,2) and (2,3) at $\cos \theta = \pm 1$. These behaviors come from the geometry of saddle point formation in the three-center Coulombic potential [2, 3].

Figure 1. Atomic impact parameters b_B for $A^{q+} + B$ and b_C for $A^{q+} + C$ with molecular impact parameter *b* for $A^{q+} + BC$.

Figure 2. Angular dependence of the ion-pair formation cross sections $\sigma(Q_{\text{near}}, Q_{\text{far}})$ in $A^{9+} + Ar_2$ collisions; those for (2,1) are indicated by closed circles (•), those for (1,2) by open circles (\circ), those for (3,2) by closed triangles (\blacktriangle), and those for (2,3) by open triangles (\bigtriangleup).

References

- T. Ohyama-Yamaguchi and A. Ichimura 2003 Nucl. Instrum. Methods B 205 620
- [2] T. Ohyama-Yamaguchi and A. Ichimura 2013 *Physica Scripta* T 156 014043
- [3] T. Ohyama-Yamaguchi and A. Ichimura 2015 J. *Phys. Conf. Ser.* **635** 032101
- [4] Matsumoto et al. 2010 J. Phys. Rev. Lett. 105 263202
- [5] Iskandar et al. 2014 Phys. Rev. Lett. 113 143201

¹E-mail: yamaguti@metro-cit.ac.jp

²E-mail: ichimura@isas.jaxa.jp