Stereodynamics of asymmetric ion-pair formation in collisions of highly-charged ions with rare gas dimers

Tomoko Ohyama-Yamaguchi ${ }^{* 1}$ and Atsushi Ichimura ${ }^{\dagger 2}$
* Tokyo Metropolitan College of Industrial Technology, Shinagawa, Tokyo 140-0011, Japan
${ }^{\dagger}$ Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210, Japan

Abstract

Synopsis Stereodyanamical effects are analyzed for multiple ionization of rare gas dimers by slow highly charged ions using the three-center Coulombic over-barrier model previously developed by the present authors.

More than ten years ago, we proposed a threecenter Coulombic over-barrier model to describe sequential multiple ionization of a rare gas dimer BC collided by a slow highly charged ion A^{q+} [1]. In more recent works [2,3], we modified the model so as to introduce the effect of partial screening during a collision for non-active target atomic site (either B or C) and also for projectile site (A) in respective steps of electron removal. The model predicts the population distribution over charge-states $\left(Q, Q^{\prime}\right)$ of dissociating ion pairs just after the collision. Measured result $[4,5]$ of the ion pair distribution in $\mathrm{Ar}^{9+}+\mathrm{Ar}_{2}$ collisisons was reasonably reproduced in the model by taking a screening parameter as $s=0.3 \sim 0.4$ [3].

In the present work, stereodynamical effects are examined in relation to the screening effect. We have calculated the ion pair formation cross sections as a function of the orientation angle, $\cos \theta=\hat{\boldsymbol{d}} \cdot \hat{\boldsymbol{v}}$, where \boldsymbol{d} denotes a molecular axis vector from C to B with \boldsymbol{v} being the projectile beam velocity. In addition, to obtain a physical insight more clearly, we introduce a pair of atomic impact parameters b_{B} and b_{C} respectively defined as the vertical distances from sites B and C to the incident trajectory (see Fig.1). Hence, we distinguish the near and far sites; thereby discuss the ion-pair formation cross section $\sigma\left(Q_{\text {near }}, Q_{\text {far }}\right)$. The near and far sites would be determined through the measurement of momentum transfer.

Figure 2 shows the angular dependence of the cross sections $\sigma\left(Q_{\text {near }}, Q_{\text {far }}\right)$ for $\left(Q_{\text {near }}, Q_{\text {far }}\right)=(2,1)$, $(1,2),(3,2)$, and $(2,3)$. It is seen from the figure that the $(2,1)$ population overwhelms $(1,2)$, and similarly $(3,2)$ overwhelms $(2,3)$. All the curves in the figure are symmetric with respect to $\cos \theta$. We see two maxima in $(2,1)$ and $(3,2)$ cross sections, and two cusps in $(1,2)$ and $(2,3)$ at $\cos \theta= \pm 1$. These behaviors come from the geometry of saddle point formation in the three-center Coulombic potential [2,3].

[^0]

Figure 1. Atomic impact parameters b_{B} for $\mathrm{A}^{q+}+\mathrm{B}$ and b_{C} for $\mathrm{A}^{q+}+\mathrm{C}$ with molecular impact parameter b for $\mathrm{A}^{q+}+\mathrm{BC}$.

Figure 2. Angular dependence of the ion-pair formation cross sections $\sigma\left(Q_{\text {near }}, Q_{\text {far }}\right)$ in $\mathrm{A}^{9+}+\mathrm{Ar}_{2}$ collisions; those for $(2,1)$ are indicated by closed circles (\bullet), those for $(1,2)$ by open circles (\circ), those for $(3,2)$ by closed triangles $(\mathbf{\Delta})$, and those for $(2,3)$ by open triangles (\triangle).

References

[1] T. Ohyama-Yamaguchi and A. Ichimura 2003 Nucl. Instrum. Methods B 205620
[2] T. Ohyama-Yamaguchi and A. Ichimura 2013 Physica Scripta T 156014043
[3] T. Ohyama-Yamaguchi and A. Ichimura 2015 J. Phys. Conf. Ser. 635032101
[4] Matsumoto et al. 2010 J. Phys. Rev. Lett. 105 263202
[5] Iskandar et al. 2014 Phys. Rev. Lett. 113143201

[^0]: ${ }^{1}$ E-mail: yamaguti@metro-cit.ac.jp
 ${ }^{2}$ E-mail: ichimura@isas.jaxa.jp

