## Single-or double-electron emission within the Keldysh nonequilibrium Green's function – a diagrammatic approach

Yaroslav Pavlyukh<sup>\*,†</sup>, Michael Schüler<sup>†1</sup>, Jamal Berakdar<sup>†</sup>

\* Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, D-67653 Kaiserslautern, Germany

<sup>†</sup> Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany

**Synopsis** We extend the general theory of electron and double electron photoemission from correlated systems based on the nonequilibrium Green's functions approach. The theory can be applied to a range of processes in interaction many-body systems, including plasmonic losses due electron-plasmon coupling during the photoemission process. As an application, we study the plasmon-mediated double photoemission from the  $C_{60}$  molecule.

In full generality, photoemission is a complicated process, where a variety of effects can occur during the ionization process. This includes, for instance, resonant states, plasmon satellites or the simultaneous emission of two electrons – the (non-sequential) double photoelectron emission or double photoemission (DPE).

Following the transition from molecules towards solids, the effective electron-electron (e–e) interaction is determined, besides the Coulomb repulsion, by the charge-density fluctuations of the dynamical environment – this where DPE comes into play as a powerful spectroscopy to access the e–e interaction directly.

For solid-state systems, the Green's function formalism has been established as the most versatile approach to incorporate electronic excitations and other interaction effects, such as electron-plasmon or electron-phonon coupling. In order describe photoemission or DPE from larger molecules or solids, a Green's function formulation is highly desirable. In this contribution, we present a systematic route for constructing Feynman diagrams for DPE which can account for all these many-body effects [1].

The theory is applied to DPE from the  $C_{60}$  molecules. The pronounced plasmonic excitations [2] give rise to a strong, dynamically screened e–e interaction which is identified as the central driving force of the process of plasmons-mediated DPE. Within this process, the inelastic scattering of an emanating photoelectron induces collective modes, which then decay upon emitting a second electron. We analyze this mechanism in detail, corroborate the findings by model and by first-principle calculations

and compare to experiments (see Fig. 1).



Figure 1. Comparison of the DPE cross-section as function of the energy  $E_1$ ,  $E_2$  of each of the two photoelectrons (a) our calculation, and (b) experimental results by Hillebrecht *et al.* [3].

## References

- [1] Y. Pavlyukh, M. Schüler, J. Berakdar 2015 *Phys. Rev. B* 91 155116
- [2] M. Schüler, J. Berakdar, Y. Pavlyukh 2015 *Phys. Rev.* A 92 021403(R)
- [3] F. U. Hillebrecht et al. 2005 Phys. Rev. B 71 125406

<sup>&</sup>lt;sup>1</sup>E-mail: michael.schueler@physik.uni-halle.de