Photo induced dissociation of hydrogenated pyrene molecules

M. Wolf^{*1}, H. V. Kiefer[†], J. Langeland[†], L. H. Andersen[†], H. T. Schmidt^{*}, H. Cederquist^{*}, H. Zettergren^{*}, and M. H. Stockett[†]

* AlbaNova University Center, Stockholm University, Atomic Physics, SE—106 91 Stockholm, Sweden
[†] Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark

Synopsis The resistance of hydrogenated Polycyclic Aromatic Hydrocarbons against carbon-backbone fragmentation is dependent on their degree of hydrogenation. We have measured the response of hydrogenated pyrene ($C_{16}H_{10+m}^+$, m = 0, 6, or 16) to photo excitation by measuring the respective fragmentation yields. Our results show that a higher degree of hydrogenation correlates with a lower resistance of the pyrene carbon-backbone against fragmentation.

It has been suggested that super-hydrogenated Polycyclic Aromatic Hydrocarbons (HPAHs) may play a role in the formation of H₂ in the interstellar medium, but only a few experimental measurements of the stability of HPAHs have been reported [1, 2, 3]. However, while hydrogenated coronene ($C_{24}H_{12+m}^+$, m = 0-7) irradiated by soft xrays showed resistance against carbon backbone fragmentation [1], hydrogenated pyrene ($C_{16}H_{10+m}^+$, m =0,6, or 16) was more susceptible to carbon backbone fragmentation in collision induced dissociation (CID) experiments [2, 3].

Here we present photo fragmentation experiments of hydrogenated pyrene cations $(C_{16}H^+_{10+m}, m = 0, 6, \text{ or } 16, \text{ see Figure } 1)$ performed at the ELISA storage ring at Aarhus University [4]. Ion bunches were accelerated to 22 keV and injected into the storage ring, where they were overlapped with a laser pulse ($E \simeq 3 \text{ eV/photon}$).

Figure 1. Structures of $C_{16}H_{10}$, $C_{16}H_{16}$, and $C_{16}H_{26}$

In Figure 2 the fragmentation yields as a function of laser pulse energy, P, are shown. P is decreased by attenuating the laser beam for a fixed wavelength. The fragmentation yield is then proportional to P^n , where n is the number of photons absorbed before fragmentation. We find that pristine pyrene (m = 0) absorbs n = 3 photons ($E_{total} = 8.17 \text{ eV}$), hexahydropyrene (m = 6) absorbs n = 2 photons ($E_{total} = 5.77 \text{ eV}$), and hexadecahydropyrene (m = 16) absorbs n = 1 photons $(E_{total} = 2.95 \text{ eV})$, both for the total fragmentation and individual fragmentation channels [5].

Figure 2. Top panel: Photo-dependencies of the total fragmentation of $C_{16}H^+_{10+m}$, m = 0, 6, or 16 Bottom panel: Photo-dependencies of individual fragmentation channels of $C_{16}H^+_{10+m}$, m = 0, 6, or 16

The power dependencies show that hydrogenation weakens the carbon backbone of pyrene against low energy photon fragmentation, and support the previous CID results.

References

- [1] G. Reitsma, et al. 2014, Phys. Rev. Lett. 113 053002
- [2] M. Gatchell, et al. 2015, Phys. Rev. A 92 050702
- [3] M. Wolf, et al. 2016, EPJ D 70 85
- [4] S. P. Møller 1997, Nucl. Instr. Meth. Phys. Res. A 394 281-286
- [5] M. Wolf, et al. 2016, Astrophys. J. 832 24

¹E-mail: michael.wolf@fysik.su.se