Hydrogenation of C\textsubscript{60} deposited on a substrate under low temperature condition

Yoichi Nakai*, Naoki Watanabe†, Yasuhiro Oba†

* RIKEN Nishina Center, Wako, Saitama, 351-0198, Japan
† Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan

Synopsis We performed experiments for hydrogenation of C\textsubscript{60} at \~300 K and low temperatures through an infrared absorption spectroscopy. Absorption bands corresponding to CH stretching of hydrogenated C\textsubscript{60} were observed at both \~300 K and low temperatures.

Observations of the infrared transitions of C\textsubscript{60} evidently indicated that fullerenes exist in the interstellar matter (ISM) [1, 2]. Fullerenes were also found in H-rich astrophysical circumstances. [2] This implies that hydrogenated fullerenes widely distribute in the ISM and thus laboratory spectroscopic investigations of those hydrogenated species have been performed for identifications of them in space [3]. However, hydrogenated fullerenes may lose hydrogen through photolysis by ultraviolet radiation [4]. On the other hand, since C\textsubscript{60} is substantially stable and hard to be dissociated, C\textsubscript{60} might exist in lower-temperature astrophysical environments than those where C\textsubscript{60} is generated. We performed experiments for hydrogenation of C\textsubscript{60} under low temperature conditions through infrared (IR) absorption spectroscopy to investigate the hydrogenation reactions in such conditions.

Our apparatus mainly consists of an ultrahigh vacuum reaction chamber, a hydrogen atomic source, a Fourier transform infrared spectrometer, and an effusive cell. The details of the apparatus were described in the previous paper [5]. An aluminum (Al) substrate is mounted in the reaction chamber. Its temperature is controlled from \~10 K to \~300 K. C\textsubscript{60} vapor was deposited onto the Al substrate. H atoms were generated in micro-wave induced plasma and transferred into the reaction chamber via a temperature-controlled pipe which determined the translational temperature of H atoms. We performed two type experiments: i) H atoms and C\textsubscript{60} were codeposited onto the substrate. ii) H atoms were deposited onto a thin solid of C\textsubscript{60} predeposited. Temperature conditions were: i) the substrate was at \~10 K while the transfer pipe of H atoms was at \~100 K and ii) both the substrate and the transfer pipe were kept at \~300 K. The latter was a comparison experiment to that under the low temperature condition.

Figure 1 shows the observed IR absorption spectrum of CH stretching band for codeposition at \~300 K. A broad band with four small peak structures are seen in the region of CH stretching band from \~2750 to \~3050 cm-1.

Figure 1. Observed IR absorption spectrum for CH stretching band in the case of codeposition at \~300K.

In the case of exposure of H atoms onto C\textsubscript{60} solid, absorption bands corresponding to CH stretching were observed at both \~300 K and low temperatures (\~10 K substrate). This implies that the reaction barrier of hydrogenation is very low, which is consistent with recent theoretical calculation [6]. The band widths seem to become wider towards high wavenumber side at \~300 K than the low temperature condition. Further details will be discussed at the conference.

References

1 E-mail: nakaiy@riken.jp