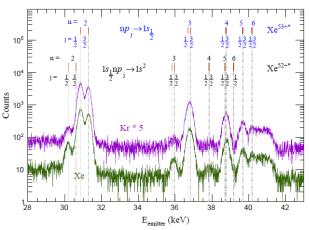
Electron capture and subsequent radiative decay of fast Xe⁵⁴⁺ ions in collisions with Kr and Xe gaseous targets

Bian Yang^{*}, Deyang Yu^{* 1}, Caojie Shao^{*, †, §}, Yingli Xue^{*}, Wei Wang^{*}, Junliang Liu^{*,†}, Rongchun Lu^{*}, Mingwu Zhang^{*}, Zhangyong Song^{*}, Fangfang Ruan^{*} and Xiaohong Cai^{* 2}

* Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China † University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China §School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China


Synopsis The process of electron capture is studied for initially bare xenon ions colliding with krypton and xenon gaseous targets at incident energies of 52-197 MeV/u. The alignment of the L-shell magnetic sublevels has been obtained via angular distribution of the Ly_{a1} photons from hydrogenlike ions of xenon.

Non-radiative capture (NRC) and radiative electron capture (REC) are two competing mechanisms in collisions between energetic highly charged ions and atoms. NRC means electron transfer from a bound state of the target to a bound states of the projectile without the emission of radiation; REC is produced with simultaneous the emission of photon for satisfying energy and momentum conservation laws. The physical essence is the competition between the "electron-nucleus" interaction and the "electron-vacuum" interaction. NRC is dominant in collisions of high-Z ions with heavy target atoms at moderate energies. REC entirely determine the electron capture channel for high collision velocities and light targets. Measuring the projectile x-ray emission associated with electron capture could determine state-selective and angular differential cross sections, as well as provide a detailed test of the theory of atomic reaction dynamics [1, 2].

Projectile x-ray spectra were recorded in collisions of 52, 94, 146, and 197 MeV/u bare Xe ions with Kr and Xe gaseous targets, at different observation angles 35° , 60° , 90° , 120° , and 145° . The experiments were performed at the heavy-ion cooling storage ring HIRFL-CSRe [3] at Lanzhou. The internal jet target [4] was used at area density of 10^{12} atom/cm². The vacuum in the CSRe was better than 10^{-12} mbar. The continuously active electron cooler compensated the beam loss caused by the interaction of the ions with the gaseous target. Therefore, the experiment was single-collision, large luminance and ultra-low background.

After Doppler correction and detection efficiency correction, the x-ray spectrum in the emitter system for 146 MeV/u Xe^{54+} ions collision with Kr and Xe as observed by the germanium detector at 35° is given in figure 1, the main transitions for H-like and He-like Xe ions are also displayed. The analysis of x-ray spectra is based on Gaussian-Amplitude function peak fitting procedure and determination of the characteristic transition intensities. The value of anisotropy parameter β_{20} could be extracted by the experimental angular distribution of the Ly_{a1}/Ly_{a2} intensity ratio. Also, the population of the excited states for H- and He- like xenon ions can be derived from β_{20} combined with the transition rates for the cascade decay of the excited states calculated by GRASP code [5].

This work is supported in part by the NSFC Grants Nos. U1332206 and 11604345.

Figure 1. The x-ray spectrum for excited states of H- and He- like Xe ions associated with electron capture into the 146 MeV/u Xe⁵⁴⁺ ions colliding with Kr and Xe, as observed at 35° in the emitter frame. The counts of Kr data was multiplied by a factor of 5 for better display.

References

- [1] J. Eichler and T. Stohlker 2007 Phys. Rep. 439 1
- [2] J. Eichler and W. Meyerhof 1995 *Relativistic Atomic Collisions* Academic Press
- [3] J. Xia et al. 2002 Nucl. Instr. Meth. A. 488 11
- [4] D. Yu et al. 2011 Nucl. Instr. Meth. B. 269 692
- [5] P. Jonsson *et al.* 2007 *Comput. Phys. Commun.* 177 597

¹ E-mail: d.yu@impcas.ac.cn

²E-mail: caixh@impcas.ac.cn