Dipole transition of two-electron ions under pressure confinement

Bibhas Dutta*¹, Sukhamoy Bhattacharyya[†], Jayanta Kumar Saha[‡], Tapan Kumar Mukhopadhyay[¶]

* Sambhu Nath College, Labpur, Birbhum 731 303, West Bengal, India

[†] Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700 131, India

[‡] Aliah University, Newtown, Kolkata 700 156, India

[¶] Narula Institute of Technology, Agarpara, Kolkata 700 109, India

Synopsis The energy values of atomic systems are modified when the system is placed in a confined domain. Within the finite domain, the ion experiences a thermodynamic pressure which pushes the energy levels towards continuum. Here we have performed explicitly correlated variational calculations in Hylleraas coordinates to estimate two-electron energy levels in ${}^{1}P^{e}$ state originating from 1snp configuration and $1s2p({}^{1}P^{o}) \rightarrow 1s^{2}({}^{1}S^{e})$ transition wavelengths within such pressure confinement.

in radius *i.e.*

If a two-electron ion is placed within an impenetrable cavity keeping the nucleus (of charge Z and infinite mass) at the centre, then the non-relativistic Hamiltonian (in a.u.) may be written as

$$H = \sum_{i=1}^{2} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \frac{1}{r_{12}} + V_R(r_1, r_2)$$
(1)

The confining potential $V_R(r_1, r_2)$ is expressed as

$$V_R(r_1, r_2) = 0 \qquad 0 \le (r_1, r_2) \le R$$

= \infty otherwise (2)

A spatial restriction and hence a thermodynamic pressure is imposed on the system due to the confining potential. The wave function Ψ satisfies the boundary condition given by

$$\Psi(r) = 0 \qquad at \quad r \ge R \tag{3}$$

The normalization condition $\langle \Psi | \Psi \rangle = 1$ is satisfied within the sphere.

We have estimated the 1s2p (${}^{1}P^{o}$) energy values of helium-like ions (Z = 2,3). The variational equation is taken from Ref. [1]. The generalized eigenvalue equation $\underline{\underline{H}} \underline{C} = E \underline{\underline{S}} \underline{\underline{C}}$ is solved where $\underline{\underline{H}}$ is the Hamiltonian matrix, $\underline{\underline{S}}$ is the overlap matrix and $\underline{\underline{C}}$ is the column matrix consisting of linear variational parameters.

Under an adiabatic approximation, the pressure (P) inside the impenetrable cavity can be expressed according to the first law of thermodynamics as

$$P = -\frac{1}{4\pi R^2} \frac{dE_R}{dR} \tag{4}$$

where E_R is the ground state energy of the ion inside the sphere of radius R.

In Fig. 1, we have shown the variation of energy value of 1s2p $(^{1}P^{o})$ state of helium within pressure confinement. The energy value of the confined system is increasing with decrease

with increase of pressure.

Figure 1. Energy value of 1s2p ($^{1}P^{o}$) state of confined Helium.

We have also estimated the wavelengths corresponding to $1s2p(^{1}P^{o}) \rightarrow 1s^{2}(^{1}S^{e})$ transitions under pressure confinement where the $1s^{2}(^{1}S^{e})$ energy values are taken from Ref. [2].

Table 1. Energy of 1s2p (${}^{1}P^{o}$) state and 1s2p(${}^{1}P^{o}$) $\rightarrow 1s^{2}({}^{1}S^{e})$ transition wavelengths of He placed under pressure confinement. x[y] denotes x × 10^y.

-			
Radius	Energy	Transition	Pressure
(a.u.)	(-E a.u.)	wavelength (Å)	(Pa)
10.0	2.117 389	579.280	3.245[3]
7.0	2.084 815	556.239	2.886[5]
5.0	1.986 309	496.682	6.941[7]

Table 1 shows the energy values of $1s2p ({}^{1}P^{o})$ state and $1s2p({}^{1}P^{o}) \rightarrow 1s^{2}({}^{1}S^{e})$ transition wavelengths of He placed under pressure confinement. We have also given the pressure 'felt' by the ion within the sphere.

References

- T. K. Mukherjee and P. K. Mukherjee 1994 *Phys. Rev.* A 50 850 635 001001
- [2] S. Bhattacharyya et al. 2013 Phys. Scr. 87 065305

¹E-mail: bibhas.snc@gmail.com