Absolute elastic differential cross sections for PF_3 molecule by electron impact: A comparative study with XF_3 (X = B, C, N and CH) molecules

N. Hishiyama*, M. Hoshino*1, F. Blanco†, G. García‡ and H. Tanaka*

* Department of Physics, Sophia University, Tokyo 102-8554, Japan.

Synopsis We report absolute electron elastic scattering differential cross sections (DCSs) from PF_3 molecules. The crossed-beam method was used in conjunction with the relative flow technique (using helium as the reference gas) to obtain absolute values. Very good agreement between the experimental DCSs and those calculated with the IAM-SCAR method has been found for the higher impact energy (above 50 eV). We have also compared the measured DCSs for PF_3 with experimental results for other fluorine compounds, XF_3 (X = B, C, N and CH), as well as with those derived from the calculated atomic fluorine cross sections multiplied by a factor of 3.

We found for the first time an atomic-like behavior in the elastic scattering of electrons from the halomethanes, CH₃F, CH₃Cl, CH₃Br, and CH₃I [1], by comparing with that for the corresponding noble gases, Ne, Ar, Kr, and Xe, respectively. This comparison suggested that the halogen atoms dominated the angular distributions of the elastic scattering for high impact energies (above 50 eV). Similar behavior were observed for isoelectronic systems such as GeH₄ and Kr [2].

More recently, we have shown this atomic-like effect in the electron elastic scattering from fluorine compounds such as XF_3 (X = B, C, N, and CH) [3] and YF_4 (Y = C, Si, and Ge) [4] for energies above 50 eV. Furthermore, the angular distribution of elastically scattered electrons from XF_3 and YF_4 molecules for energies above 50 eV have been found to be well reproduced by the calculated DCS for atomic-fluorine multiplied by a factor of 3 and 4, respectively. These results suggested that the elastic scattering for high impact energies is virtually dominated by the outer fluorine atoms surrounding the central atom. This also evidenced that atomic-like effects persist in electron–molecule scattering systems.

In this study, we have measured the elastic DCSs for PF₃ molecules and results have been compared with the IAM-SCAR calculations [5] as well as with the previously reported for XF₃ molecules [3] to verify the atomic-like effect in the fluorine compound molecules.

The experiment was performed at Sophia University using an original crossed-beam apparatus [6]. The total energy resolution was about 50 meV (FWHM). The relative flow technique was used to obtain absolute DCS values. Estimated uncertainties of the DCSs are about 15%.

¹E-mail: masami-h@sophia.ac.jp

Figure 1 shows the measured angular distribution of the elastic DCS for PF₃ at 100 eV impact energy together with the present IAM-SCAR calculated values and those corresponding to XF₃ molecules. The present experimental results also confirm the atomic-like effect of the elastic scattering DCSs for the PF₃ molecule.

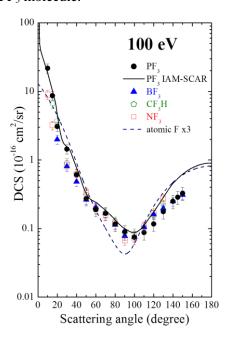


Figure 1. Angular distributions of DCSs for XF_3 (X = B, CH, N, and P) molecules at 100 eV impact energy, together with the IAM-SCAR calculation for PF3 and DCS of fluorine atom multiplied by a factor of 3.

References

- [1] H. Kato et al. 2010 J. Chem. Phys. 132 074309
- [2] M. A. Dillon et al. 1993 J. Phys. B 26 3147
- [3] M. Hoshino et al. 2015 J. Chem. Phys. 143 024313
- [4] H. Kato et al. 2012 J. Chem. Phys. 136 134313
- [5] F. Blanco and G. García 2007 Phys. Lett. A 360 707
- [6] H. Tanaka et al. 1998 Phys. Rev. A <u>57</u> <u>1798</u>

[†] Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain

[‡] Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain