Charge equilibration times for slow highly charged ions in single layer graphene

E. Gruber^{*}, R. A. Wilhelm[†], J. Schwestka^{*}, V. Smejkal^{*}, R. Kozubek[‡], A. V. Krasheninnikov[†], M. Schleberger[‡], S. Facsko[†], and F. Aumayr^{* 1}

^{*} TU Wien, Institute of Applied Physics, 1040 Vienna, Austria, EU
[†] Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany, EU
[‡] Universität Duisburg-Essen, 47048 Duisburg, Germany, EU

Synopsis We report on charge exchange and energy loss measurements for slow highly charged Xe^{q^+} ($q \le 35$) ions after transmission through a single layer of freestanding graphene. Surprisingly short charge equilibration times of only a few femtoseconds are found, which cannot be explained within currently available models.

Highly charged ions can be used as a tool to measure the short-time response of 2D materials to an extremely large, local external field. A charge state of q = 35 implies a local electric field strength of 1.8x10¹¹ Vm⁻¹ at a distance of 5 Å from it (corresponding to laser power densities of $\sim 10^{17}$ Wcm⁻²). Previous work on scattering of HCI from solid surfaces or their transmission through freestanding carbon membranes reported unexpectedly large charge capture within 5 - 30fs [1 and refs. therein]. Recently we took the final step and presented results for the ultimately thin carbon target, a freestanding single layer of graphene [2]. Measurements of the charge state and energy of the transmitted ions surprisingly show that a large number of electrons is extracted from a small surface area (see figure 1).

Figure 1. The strong electric field of a highly charged ion is able to capture dozens of electrons from the single layer graphene within a few femtoseconds [2].

Charge equilibration times are derived from the mean exit charge state in dependence of the incident charge state and ion velocity. We find that Xe^{q+} ions equilibrate within a time of only a few fs (see figure 2).

Figure 2. Number of captured (and stabilized) electrons after transmission of highly charged Xe ions (incident charge state $q_{in} = 20-35$) through a single layer graphene sheet as a function of the inverse projectile velocity [2].

Our current understanding of HCI-solid interaction is not able to explain an almost complete deexcitation of the projectiles within the limited time span of the interaction with a 2D target. This strongly points to a new mechanism, which will be presented at the conference.

References

- [1] R.A. Wilhelm *et al.* 2014 *Phys.Rev.Lett.* **112**, 153201
- [2] E. Gruber et al. 2016 Nature Comm. 7, 13948

¹E-mail: aumayr@iap.tuwien.ac.at