LithSonic[™] - Lithium metal production for the post-lithium-ion battery era

D.A. Jewell¹, and M. Cooksey²

- 1. Senior Research Engineer, CSIRO, Clayton Victoria 3169. Email: daniel.jewell@csiro.au
- 2. Senior Principal Research Scientist, CSIRO, Clayton Victoria 3169. Email: mark.cooksey@csiro.au

ABSTRACT

Lithium metal has long been recognised as the ultimate anode material because of its extremely high theoretical specific capacity (3,860 mAh/g) and extremely low redox potential (-3.07 V vs. SHE). However, despite extensive historical efforts to develop a practical rechargeable lithium metal battery, the technical challenges proved insurmountable and the lithium-ion battery (LIB) eventually arose as a compromise. LIBs work by using electrode materials that store and release lithium ions in/from their structure (intercalation/deintercalation) and thereby avoid the use of metallic lithium anodes.

Since their commercial debut in 1991, LIBs have revolutionised portable energy storage and enabled countless dependent technologies including: power tools, mobile phones, laptops, and electric vehicles. Unfortunately, the need for intercalation electrodes has limited the energy density of the battery and, despite incremental improvements, lithium-ion technology is rapidly approaching its theoretical limit. Revolutionary advances will only be possible with new battery chemistries.

Rechargeable lithium metal batteries have come a long way in the last few decades and are now a leading contender as the next-generation battery, provided that the (current) high-cost of lithium metal (USD100/kg), small global market (<5 ktpa), and unappealing electrolytic extraction process do not limit their economic attractiveness and wide-scale adoption. A lithium metal battery revolution requires a lithium metal extraction revolution.

LithSonicTM is a lower-cost, more environmentally friendly technology for the production of lithium metal, derived from CSIRO's magnesium metal extraction process (MagSonicTM). By coupling the carbothermic reduction of lithium oxide to supersonic quenching, LithSonicTM can produce lithium metal in powder form, at lower cost, and without the usual emissions of chlorine that arise from the existing electrolysis process (5 kgCl₂ / kg Li).

LithSonic[™] is offering a new paradigm for lithium metal production, and thereby enabling the post-lithium-ion battery era.