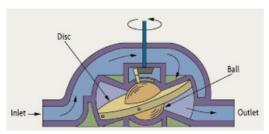
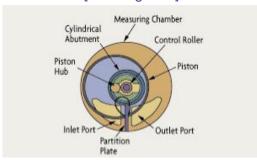

Electronic Water Meter

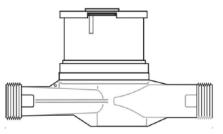
- Fluidic Oscillation Water Meter




Technology Trends

1st Gen

Positive Displacement


[Nutating Disc]

[Oscillating Piston]

2nd Gen

Velocity

[Single Jet]

[Multi Jet]

3rd Gen

Solid State

Fluidic Oscillator

Ultrasonic

Magnetic

Mechanical Meters

[Advantage]

- Proven Technology
- Widely Accepted and Trusted In the Industry
- Technology has Evolved and Improved Over more than 100 years

[Disadvantage]

- Low flow performance Limitations
- Accuracy relies on Close Tolerances that are subject to wear
- Particles in Water can cause Problem
- Calcium in water can cause Problem
- Maintenance can be required

Solid State Meters

- No Moving Parts to Wear Out
- Particles do not cause Meters to stick or Stop
- No Maintenance
- Better Low Flow Accuracy
- Better High Flow Durability

Polyketone - New Engineering Plastic Technology

Heavy industry

Abrasion/Wear Resistance

Automotive Industry

Impact Strength

14 times higher wear properties than **POM**, reducing

Noise issues in variable wear applications

High Precision Industry

Chemical Resistance

 $\begin{array}{ll} \mbox{Highly resistant to automotive fluids, hydrocarbo} \\ \mbox{n} \end{array}$

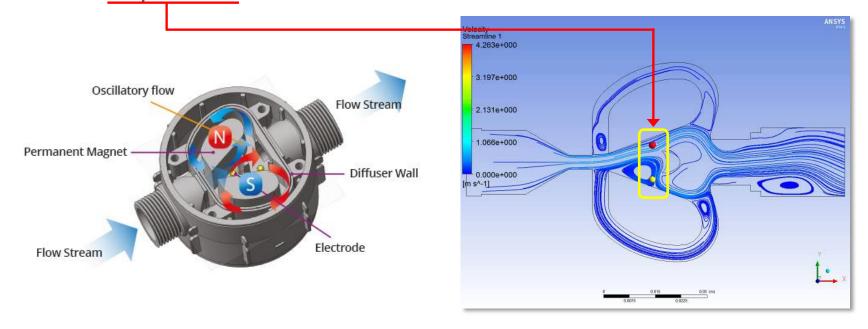
Solvents, salts and weak acids/bases

For Water Meter

- Good Mechanical Properties
- Human-Friendly Materials
 (Pb, Zn, Formaldehyde Free)
- Better Hydrolysis Resistance

POLYKETONE(POKETONE) is the world's new material

only Hyosung corporation Developed and successfully commercial ized


Principle of Fluidic Oscillation

A special design of water flow chamber creates a fluctuating pressure sequence that causes the water flow to oscillate.

The fluidic oscillator consists of a nozzle, bi-stable diffuser and two feedback channels and cl assified into two different groups – wall attachment devices and jet interaction devices.

The oscillators in the wall-attachment class(our product) are based on the attachment of a fluid jet to an adjacent wall, a phenomenon known as the "Coanda effect".

Based on magnetic force being produced during this process, Our meter measures flow of w ater detected by 2 electrodes .

Key Difference

	Item	Mechanical	Fluidic Oscillation	Remark		
Durability	Moving Parts	Yes	No			
	Accuracy	Low	High			
	Water Proof	Yes	Yes			
	Wear on parts	Yes	No			
	Life time	5 years	<u>10 years</u>	Incl. Extra Battery Pack		
Comfortability	installation	Limited (only Parallel) No Limit				
Water Qaulity	Drinkable water	Harmful to health	<u>Harmless to health</u>	Hexagon water cre ated Neodium magnet(4,000 gaus)		
	Noxious Metals	Metal : PB, Lead, ZN Plastic : Formaldehyde	<u>Free</u>			
	Solid Particles	Wear on Moving Parts	No Solid Particles stuck	Sand, Grit, Mud & Compound of Calcium		
Self-Defense	Appearance	Metal	<u>Plastic</u>	Free from Theft		
Communication	AMR system	No	Yes			
Economic	Import Duty & Tax	Not Applicable	Flexible	SKD Shipment available		
	Maintenance Cost	every 5 year change	More than 10 years long			
	Easy Assembly	Hard	Easy			

Hardcore Technology

High Accuracy (R200~R100)

R100: India // R125: Indonesia, Peru, Brazil // R200: S.Korea

No moving Parts (No Wear)

Water Proof

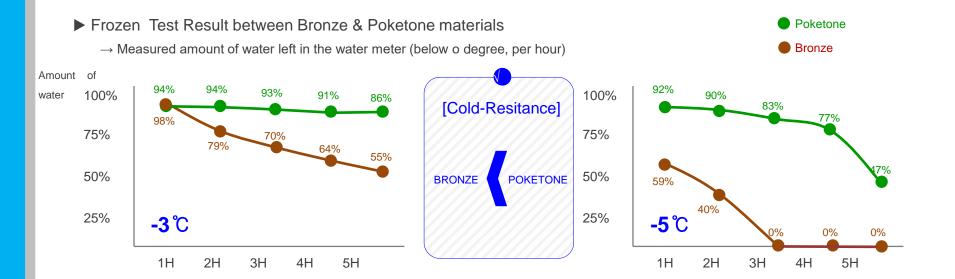
H or V

Compatible with all AMR

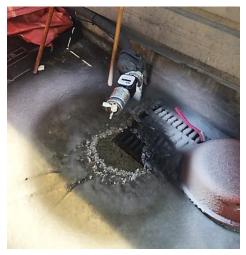
Reverse flow detect

No Air Count

Permanent data storage



Cold-Resistance


► Water Meter, hard to be frozen

	Mechanical Meter	Fluidic Oscillation Meter	
λ : Cold resistance (kal / m h °C)	657 (Material : Bronze)	0.31 (Material : Polyketone)	
F : Heating surface (m²)	Same (1)	Same (1)	
Δt : Temperature difference (°C)	- 20°C	- 20℃	
Thickness (mm)	10	20	

Thermal conductivity ($\lambda : kal / mh^{\circ}C$): the property of a material to conduct heat Heat conduction calories = (Thermal conductivity) x (Area) x (T_{hot} - T_{cold}) / Thickness

Outdoor Experiment

. 247	도 화정시	201614	1 의
1 47/	나는 오늘까지	2016	1 = 1

일	월	화	수	목	금	토
					1	2
					-4 °C 6 °C	1 °C 10 °C
3	4	5	6	7	8	9
		<u></u>	2	O	<u></u>	-
3 ℃ 11 ℃	-1 °C 8 °C	-3 °C 3 °C	- 5 ℃ 4 ℃	-6 °C 3 °C	-7 °C 3 °C	-4 °C 4 °C
10	11	12	13	14	15	16
-	0	O	-	-	-	
-2 °C 7 °C	-5 °C 3 °C	-8 °C 2 °C	-7 °C 2 °C	-10 °C 1 °C	-4 °C 5 °C	-2 °C 5 °C
17	18	19	20	21	22	23
-	***	O	<u></u>		and the same	
-2 °C 7 °C	-10 °C 2 °C	-13 °C -7 °C	-13 °C -5 °C	-10 °C -1 °C	-11 °C -2 °C	-14 °C -6 °C
24	25	26	27	28	29	30
O	O	-			-	-
-16 °C -9 °C	-14 °C -2 °C	-7 °C 3 °C	-6 °C 5 °C	-7 °C 5 °C	-2 ℃ 7 ℃	-4 °C 8 °C
31						
-5 °C 1 °C						

종합통계

최저기온: -16 °C 최고기온: 11 °C

■ Date: Jan 4th ~ Jan 31^{st,} 2016 (during most cold period)

■ Location : Hwaseong, South Korea.

■ Ambient Temperature : Lowest - 16 °C // Highest + 11 °C

■ Test Result

1) The service pipe was completely frozen at -16 ℃ even though it was wrapped with heat protector

2) The display runs without freeze and burst.

3) The Water Meter still work normally even when run water placed at service pipe (after warmed water)