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1 Introduction

Nearly 80 percent of the world’s extreme poor live in rural areas, with most relying on

agriculture for their livelihoods (World Bank, 2019). These individuals are often trapped

in a vicious circle of low yields, due to limited adoption of modern agricultural technologies

capable of improving their productivity and raising their incomes. One of the main

barriers to adoption is farmers’ imperfect knowledge of these technologies and of the best

practices associated with their use.1

Over the past two decades, the rapid diffusion of mobile phones and telecommunication

services in rural areas of developing countries has raised expectations about their abil-

ity to reduce informational frictions, promote technology adoption and increase farmers’

productivity. A number of recent randomized controlled trials have shown that access to

mobile-based agricultural advice services may indeed affect agricultural practices (Cole

and Fernando, 2020; Casaburi et al., 2019; Fabregas et al., 2019). Yet, several important

questions remain unanswered. First, there is little empirical evidence on the distributional

consequences of greater access to information. Does its expansion amplify or reduce pro-

ductivity differences across farmers? Second, we have limited empirical evidence on its

long-run consequences. Is the effect of access to information on agricultural practices and

productivity temporary or long-lived? A key challenge to tackle these questions is that

one needs to observe, for a large sample of farmers and over a long period of time, data

on access to information about modern agricultural technologies, the actual adoption of

these technologies, and the evolution of agricultural productivity. Furthermore, one needs

to be able to separate the role of information from additional dimensions through which

mobile phones can influence farmers’ decisions to modernize their technologies.

In this paper we address these challenges using large-scale data from India. First,

we exploit variation in the rollout of mobile phone coverage generated by the Shared

Mobile Infrastructure Scheme (SMIS), a large government program launched in 2007 that

financed the construction of about 7,000 mobile phone towers in previously unconnected

areas of India. Second, we match the geographical coverage brought by new SMIS towers

with data on the location and content of 2.5 million toll-free phone calls made by farmers

to one of India’s leading agricultural advice services, the Kisan Call Centers (KCC). This

data allows us to observe farmers’ questions about specific agricultural technologies and

the answers they receive from agronomists. We exploit one feature of the KCC service –

that agricultural advice is offered in a limited number of languages, effectively excluding

farmers who do not speak any of these – to isolate the effect of access to information.

Finally, we match data on mobile phone coverage and phone calls with detailed district-

level survey data on crop yields and adoption of agricultural inputs – including seed

1 On the constraints to the adoption of new technologies in agriculture in developing countries, see re-
views in Jack (2013), Foster and Rosenzweig (2010) and Feder et al. (1985). On the role of information
frictions see, among others, Foster and Rosenzweig (1995) and Conley and Udry (2010).
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varieties, pesticides and herbicides – in an area covering around 19 million farmers.

The combination of these datasets allows us to map farmers’ calls about specific agri-

cultural technologies with their actual adoption. We observe data on agricultural inputs

used by farmers 5 years after the introduction of the SMIS and annual agricultural yields

for 10 years after the introduction of the SMIS, which allows to study the long-run effects

of access to information.

Our empirical analysis proceeds in two steps. In the first step, we use an event-study

design to document the evolution of farmers’ calls to seek agricultural advice when new

mobile phone towers are constructed in previously uncovered areas. Using high-frequency

(monthly) variation, we document that the construction of the first mobile phone tower

in a given area is followed by a significant increase in the number of farmers’ calls. This

is consistent with a large and underserved demand for agricultural advice in rural India.2

The event study also documents that linguistic differences can generate unequal gains in

access to information. Although the government-sponsored agricultural advice is in prin-

ciple available to all farmers with access to a phone, KCC agronomists answer calls only

in one of the 22 official languages recognized by the Indian Constitution.3 This effectively

creates a language barrier for the over 40 million individuals whose main language belongs

to the 100 non-official ones recorded in the Indian Census. Figure 1 shows an illustrative

example of such barriers using data from the state of Odisha. The red outlined area in

the southern part of the state is inhabited by a majority of local population speaking

Kui, a Dravidian language without official status. While this area has experienced an

expansion in mobile phone coverage similar to the rest of Odisha, phone calls by farmers

to KCC from this area have been significantly lower. This is a robust finding across the

whole country: calls for agricultural advice from areas where the majority of the local

population speaks a non-official language only increase by 20 to 30 percent of the increase

observed in areas where the majority speaks an official language. This is despite the fact

that, within our sample, these areas are comparable in terms of initial socio-economic

characteristics and pre-existing trends in agricultural performance.

In the second step of our analysis, we study the real effects of access to information on

technology adoption and productivity. To account for the potentially endogenous loca-

tion of SMIS mobile phone towers, we propose an identification strategy that compares

– within each administrative district – locations where new SMIS towers were proposed

and eventually constructed, with locations where they were also proposed but eventually

2 As of 2003, 60 percent of Indian farmers in a nationally representative survey reported not having
access to any source of information on modern technology to assist them in their farming practices
(National Sample Survey, 2005).

3 The 2011 Census identifies 121 languages spoken in India, 22 of which are part of the Eight Schedule
of the Constitution, i.e. they are recognized as official languages of the Republic of India. The 22
officially-recognized languages are: Hindi, Bengali, Marathi, Telugu, Tamil, Gujarati, Urdu, Kannada,
Odia, Malayalam, Punjabi, Assamese, Maithili, Santali, Kashmiri, Nepali, Sindhi, Dogri, Konkani,
Manipuri, Bodo, and Sanskrit.
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not constructed. We show that these two types of location are balanced on initial observ-

able characteristics once we control for determinants of tower relocation such as terrain

ruggedness and population covered, and that they experienced similar pre-existing trends

in both technology adoption and agricultural yields in the 5 years preceding the introduc-

tion of new towers. In addition, we exploit variation in the spatial diffusion of non-official

languages to capture the heterogeneous ability of farmers to access phone-based services

for agricultural advice. We think of the combination of mobile phone coverage and ab-

sence of language barriers with agricultural advisors as a positive shock to information

about agricultural practices for farmers.

Our measures of technology adoption include farmers’ adoption of high-yielding variety

(HYV) seeds, chemical fertilizers and pesticides, as well as artificial irrigation systems.

HYV seeds are commercially developed to increase crop yields and are one of the most

prominent innovations in modern agriculture.4 Chemical fertilizers and reliable irrigation

systems are key complementary inputs to maximize HYV potential. Data on the adoption

of these technologies is sourced from the Agricultural Input Survey of India, which is

carried out at 5-year intervals and whose last two waves were in 2007 and 2012.

Our estimates indicate that in areas where the entire population speaks an official

language and can therefore access agricultural advice, a 1 s.d. larger increase in mobile

phone coverage is associated to a 1.4 percentage points larger increase in area farmed with

HYV seeds between 2007 and 2012. This effect corresponds to a 5.3 percent increase in

land cultivated with HYV seeds for the average cell in our sample.5 We find positive and

significant effects also on the adoption of chemical fertilizers, pesticides and irrigation.

Consistent with an information mechanism, we show that these areas also experienced

a larger increase in farmers’ calls seeking information on the adopted technologies. On

the other hand, in areas where the population cannot access agricultural advice due to

language barriers with KCC advisors, the impact of mobile phones on the modernization

of agricultural technologies is significantly more limited. Our estimates indicate that, for

any level of mobile phone coverage increase, a 1 s.d. increase in the share of non-official

language speakers reduces the adoption of new agricultural technologies by 18 percent.

This effectively represents the share of technology adoption attributable to access to

information about agricultural practices.

Next, we study the effect of farmers’ access to information on agricultural productivity,

measured by average crop yields. Our estimates indicate a significant relative increase in

yields in the years following the construction of a new SMIS tower in previously uncovered

areas. We exploit the yearly frequency of the data to document the timing of this effect.

While there are no pre-existing trends in agricultural yields in the 5 years prior to the

4 On the impact of high-yielding varieties on agricultural productivity and economic development see,
among others, Evenson and Gollin (2002, 2003).

5 The units of observation are cells of 0.083 × 0.083 degree resolution, approximately corresponding to
areas of 10×10 km at the equator.
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launch of the program, the effect of new mobile phone towers materializes about one year

after their construction and increases in magnitude for the first three years. We also show

that this effect is persistent in the long run: areas that received a new SMIS tower and did

not face language barriers to access agricultural advice still displayed higher agricultural

yields in 2017, about a decade after the start of the program. As with technology adoption,

however, the positive effects of mobile phones on agricultural productivity are strongly

mitigated by the inability of farmers to access agricultural advice. Our estimates indicate

that in areas where more than 50 percent of the population speaks a non-official language,

the effect of mobile phone coverage on productivity is completely muted. We also show

that these results, like the previous on technology adoption, are robust to controlling for

the interaction between mobile coverage expansion and other factors, such as geographical

isolation or income levels, that may potentially be correlated with the diffusion of non-

official languages in a given area.

Finally, we show that the returns to mobile phone coverage and access to information

are highly heterogeneous, depending on farmers’ initial productivity. Within our sample

of rural areas with no initial mobile phone coverage there is large variation in the base-

line level of agricultural productivity. In 2007, the average yield of an area at the 75th

percentile of the productivity distribution was around twice as large as the one observed

at the 25th percentile. This is a yield gap similar to that observed in rice and wheat pro-

duction between the richest 10 percent and the poorest 10 percent of countries (Gollin,

Lagakos, and Waugh, 2014). Our results show that the effect of access to information is

the largest for areas in the lowest productivity quartile. The estimates suggest that pro-

viding agricultural advice on mobile phones can close about 36 percent of the productivity

gap between farmers in the 25th percentile of the productivity distribution and those in

the 75th percentile.

The lower returns to mobile phone coverage in areas where farmers face language barri-

ers with KCC advisors strongly suggest that access to agricultural advice plays a key role

in the modernization of agriculture. However, we also discuss and test alternative mecha-

nisms potentially linking mobile phone coverage with technology adoption and productiv-

ity. For one, previous evidence suggests that by providing detailed and timely information

on prices, mobile phones can reduce price dispersion, favor a more efficient allocation of

goods across markets and generate higher incomes for goods producers (Jensen, 2007).

This, in turn, could help farmers pay the fixed cost of adopting new technologies. To

account for this possibility, we also present estimates of the model where we include a

full set of fixed effects for the closest agricultural market to each cell in our sample. This

allows us to compare outcomes across farmers who plausibly face the same prices for their

products and experience the same changes in local demand. All our main results are

robust to this augmented specification.

A second alternative mechanism through which mobile phones could also affect tech-
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nology adoption and productivity is social learning. Models of social learning suggest

that individuals adopt new technologies once they have gathered enough evidence from

previous adopters that the new technology is actually worthy of uptake.6 In our context,

the expansion of the mobile phone network could facilitate the diffusion of such infor-

mation across farmers and encourage the modernization of agriculture, regardless of the

availability of call centers for agricultural advice. A prediction of this interpretation is

that social learning is more likely to happen in areas where individuals tend to speak the

same language. We attempt to capture this potential channel in our main specification

by controlling for the interaction between mobile phone diffusion and local linguistic frag-

mentation. We find that our main estimates on access to information are not significantly

affected by the introduction of this additional interaction term.

Related Literature

Our paper is related to several strands of the literature. First, a growing literature

analyzes the economic impacts of large infrastructure programs in developing countries.

Recent empirical work has focused on transportation infrastructure (Faber 2014, Donald-

son 2018, Asher and Novosad 2020), construction of dams (Duflo and Pande 2007) and

rural electrification (Dinkelman 2011, Burlig and Preonas 2016, Lee, Miguel, and Wolfram

2020). Related papers have focused on how the expansion of telecommunication services

by private operators affects price dispersion (Jensen 2007, Aker 2010) and estimated the

welfare implications of this network good for individuals in rural areas (Björkegren 2019).

We contribute to this literature by providing direct empirical estimates of the effects on

agriculture of a large government program bringing telecommunications infrastructure to

rural areas.

A separate body of literature uses randomized controlled trials to evaluate the impact of

mobile phone-based agricultural extension programs on farmers’ practices and yields, find-

ing mixed results on their effectiveness. For example, Casaburi, Kremer, Mullainathan,

and Ramrattan (2019) show that sending text messages containing agricultural advice

has short-term positive effects on the yields of small sugarcane farmers in Kenya, but the

increase dissipates over time. Cole and Fernando (2020) randomize access to a hot line

for agricultural advice to households in the Indian state of Gujarat, finding evidence that

the use of this phone service has a significant impact on agricultural practices, although

not systematic positive impact on yields. Fafchamps and Minten (2012) study the impact

of a text message-based agricultural information system providing market and weather

information to Indian farmers and find non significant effects on cultivation practices or

productivity. Relative to this literature, we use large administrative data to explore the

long-run (5 to 10 years) effects of access to agricultural advice. The nature of the data

6 See the review of the literature in Young (2009) and seminal empirical studies by Ryan and Gross
(1943) and Griliches (1957) on innovation diffusion using data on adoption of hybrid corn in the US.
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– which cover a large and geographically diverse sample of farmers – has the advantage

to provide the statistical power necessary to detect even small effects, and to study how

such effects change across farmers with different initial characteristics. Relative to the

previous literature, we also document that language barriers between farmers and govern-

ment employees can generate largely unequal gains from mobile phone based extension

programs.7

More generally, our paper is also related to the micro-development literature investigat-

ing the role of modern agricultural technologies – such as high-yielding variety seeds – in

the process of development. This literature has studied several potential frictions to the

adoption of modern technologies by farmers, including credit constraints (Duflo, Kremer,

and Robinson, 2004), missing insurance markets (Karlan, Osei, Osei-Akoto, and Udry,

2014), lack of access to high-quality inputs (Bold, Kaizzi, Svensson, and Yanagizawa-

Drott, 2017). Among these frictions, the lack of information on new technologies or how

to use them has received extensive attention. This literature includes work grounded

on learning models of new technologies based on farmers’ own experience or the experi-

ence of others in their social network (Foster and Rosenzweig, 1995; Conley and Udry,

2010; Munshi, 2004; Hanna, Mullainathan, and Schwartzstein, 2014; Beaman, BenYishay,

Magruder, and Mobarak, 2018).8

Studies in this area have also highlighted the mixed record of traditional agricultural

extension programs (Duflo, Kremer, and Robinson, 2011). In particular, researchers and

policy makers have long identified the lack of timely and personalized information as

obstacles to the effectiveness of the communication between farmers and extension workers

(Anderson and Feder, 2004). A key characteristic of the mobile phone-based extension

program in this paper is that it allows farmers to solicit information on the issues they

face at any point during the agricultural production cycle. In addition, farmers receive

information that is adapted to the specific agro-climatic characteristics of their area.

Overall, our results are consistent with farmers valuing this service. In particular, farmers

solicit more information when receiving mobile phone access, they request information on

different issues and at different times of the year, and ask for more and more information

over time.9

Finally, our paper is also related to an influential body of work documenting the ex-

istence of substantial differences in agricultural productivity across countries and inves-

tigated their determinants (e.g., Gollin, Lagakos, and Waugh, 2014). These differences

are larger than those in aggregate labor productivity, suggesting that the productivity

7 For recent reviews of the broader literature on the impact of mobile phones in developing countries
see Aker, Ghosh, and Burrell (2016) and Fabregas, Kremer, and Schilbach (2019).

8 The extent to which social networks represent a reliable source of information on agricultural practices
and technologies is unclear, as neighboring farmers and agricultural input dealers may be either poorly
informed or misinform farmers due to misaligned incentives (Anderson and Birner, 2007).

9 The number of calls to Kisan Call Centers has been increasing steadily since its inception, from half
a million yearly calls in the late 2000s to about four millions yearly calls a decade later.
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gap in agriculture is particularly important for our understanding of income differences

across countries (Caselli 2005, Restuccia, Yang, and Zhu 2008). Several potential expla-

nations of this productivity gap have been proposed, including land misallocation, lack

of insurance markets, or frictions in the reallocation of workers from agriculture to the

non-agricultural sectors (Adamopoulos and Restuccia 2014, Lagakos and Waugh 2013,

Donovan 2020). Relative to these studies, we emphasize and quantify the role played by

information frictions.

The rest of the paper is organized as follows. Section 2 introduces the data used in the

analysis, and provides institutional background on the diffusion of mobile phones in India

and on the two government programs – the Shared Mobile Infrastructure Scheme and the

Kisan Call Centers for agricultural advice – that are central to our empirical analysis.

Section 3 presents our identification strategy and all the empirical results. Section 4

provides concluding remarks.

2 Data, Institutional Background, and Stylized Facts

In this section we describe the main datasets used in the empirical analysis, provide

some institutional background for the government programs used for identification, and

present a set of stylized facts that emerge from the raw data. The unit of observation in

our empirical analysis are areas of 10×10 km, which we refer to as cells. We use a grid

of 10×10 km cells to match information from the datasets presented below, which come

at different levels of geographical aggregation, which could be an administrative division

such as a village or a subdistrict, or a geo-referenced polygon in the case of mobile phone

coverage data.10

2.1 Data on Mobile Phone Coverage and its Diffusion in India

We use data on the diffusion of mobile phone coverage in India provided by the Global

System for Mobile Communication Association (GSMA), the association representing the

interests of the mobile phone industry worldwide. The data is collected by GSMA directly

from mobile operators and refers to the GSM network, which is the dominant standard in

India with around 89 percent of the market share in 2012 (Telecom Regulatory Authority

of India, 2012). The data licensed to us provide, for all years between 1998 and 2012,

10 Overall, India can be split into 41,495 cells distributed over 524 districts. Since cell borders do not
typically correspond to district administrative borders, we assign cells spanning over more than one
district to the district which occupies the largest area. One challenge that we face is that Indian
districts have been changing shape, or were created or dissolved during the period under study.
In order to define districts consistently over time, we created minimum comparable areas (MCAs)
encompassing one or more districts that cover the same geographical space between 1997 and 2012.
The main source used to re-construct district changes over time is the Population Census Map, which
contains a short history of how each district was created.
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geo-located information on mobile phone coverage aggregated across all operators.11 Our

analysis focuses on the 2G technology, the generation of mobile phones available in India

during the period under study, which allows for phone calls and text messaging.12

Figure 2 reports the geographical diffusion of 2G GSM mobile phone coverage in India

at five-year intervals between 1997 and 2012. While the country had virtually no mobile

phone coverage until 1997, the mobile phone network began to expand rapidly shortly af-

terwards, covering 22 percent of the population in 2002, 61 percent in 2007 and 89 percent

in 2012.13 Data from the World Bank (2014) indicate that mobile phone subscriptions per

100 people in India went from 0.08 in 1997 to 68.4 in 2012. Following a standard pattern

of diffusion (Buys, Dasgupta, Thomas, and Wheeler, 2009; Aker and Mbiti, 2010), the

spatial roll-out of mobile phone coverage started in urban areas and only later reached

rural ones. We document this pattern in Figure C.1, which reports – at 5-year intervals

between 1997 and 2012 – the average share of land covered by mobile phones across cells

with different initial levels of urbanization. As a proxy for urbanization we use night light

intensity in 1996. As shown, in 1997 there was virtually no mobile phone coverage in

either urban or rural areas. By 2002, areas in the highest decile of night light intensity

had, on average, 40 percent of their area covered by the mobile phone network, more than

80 percent in 2007, and close to full coverage by 2012. On the other hand, mobile phone

coverage in the lowest decile was, on average, still almost non-existent in 2002, around 20

percent by 2007 and around 40 percent by 2012.

2.2 Construction of mobile phone towers under the SMIS Government

Program

The Indian government played an important role in the expansion of the mobile phone

network in rural areas, where market demand did not justify infrastructural investment

by private telecommunication companies. In 2007, the government launched the Shared

Mobile Infrastructure Scheme (SMIS), aimed at providing subsidies to telecom operators

for the construction and maintenance of mobile towers in identified rural areas without

existing mobile coverage. Under Phase-I of the program, a total of 7,871 sites across 500

11 The extent of geographical precision of the original data submissions ranges between 1 km2 on the
ground for high-quality submissions based on GIS vector format, and 15-23 km2 for submissions based
on the location of antennas and their corresponding radius of coverage. The data have been used by
Manacorda and Tesei (2020) to study the effects of mobile phone coverage on political mobilization
in Africa.

12 The 3G spectrum was allocated to private operators only at the end of 2010 and the roll-out of
commercial operations was very slow. By 2015, 3G penetration was just 20 percent in urban areas
and much lower in rural areas (Ericsson, 2015).

13 We use data from the Gridded Population of the World, Version 4. We assume that population is
uniformly distributed within each 10×10 km cell and we use information on the share of each cell’s
area that is covered by mobile phone technology to compute the fraction of individuals reached by the
mobile phone signal in each cell/year. We then aggregate across cells to obtain the share of population
covered by mobile phone signal in the country in a given year.
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districts were initially identified as potential locations for new towers. Villages or cluster

of villages not covered by the mobile phone network and with a population of at least

2,000 were prioritized. Telecom operators receiving government subsidies were responsible

for installing and maintaining the towers between 2007 and 2013.14 Of the 7,871 proposed

towers under Phase-I, 7,353 were eventually constructed.

We obtained data on the towers constructed under SMIS from the Center for Develop-

ment of Telematics (C-DoT) - the consulting arm of the Department of Telecommunica-

tions of India. The C-DoT provided us with the geographical coordinates of the location

of the 7,871 initially proposed towers, the geographical coordinates of the location of the

7,353 effectively constructed towers, and the operational date of each tower. The latter

is the date in which the construction of the tower is completed and the tower becomes

operational. For simplicity, in the remainder of the paper we refer to this date as the date

of construction. From the 7,353 towers constructed under Phase I of the SMIS program

we remove 350 towers for which the construction date is missing. This leaves us with 7,003

mobile towers used in our empirical analysis. Figure 3 shows a timeline of construction

of these towers by month. As shown, the construction of towers effectively started in

January of 2008 and ended in May of 2010, with most towers being introduced between

the second half of 2008 and the first half of 2009. To estimate the potential coverage of

each tower, we assume a 5-km radius of coverage around the towers’ location, based on

information reported in tender documents obtained from the C-DoT officials responsible

for the Phase I implementation (tender document No. 30-148/2006-USF).

2.3 Data on farmers’ calls to Kisan Call Centers

To investigate the role of information on agricultural practices we use data on farmers’

calls to Kisan Call Centers (KCC), which we obtained from the Department of Agriculture,

Cooperation and Farmers Welfare. Calls are geo-located at the subdistrict (or block)

level and we assign them proportionally to all cells whose centroid is contained in the

subdistrict.15

14 A second Phase of the scheme was also planned to be launched shortly after Phase-I to cover even
more sparsely populated areas, but was never implemented.

15 On average, there are 27 cells per subdistrict. Whenever information on the subdistrict from which
the call is originated is missing, we use information on the district of the call and the crop for which
the caller is seeking information to assign calls to a given cell. Our probabilistic assignment rule is
described in the following equation:

Callsidt =
∑
c∈Oi

(Calls)cdt ×
(
Areaidc,t=2000

Areadc,t=2000

)
The first element of the product captures the number of calls about a given crop c that are originated

from district d, while the second element of the product captures the share of crop c that is farmed
in cell i over the total area farmed with the same crop in district d (sourced from the FAO-GAEZ
data). Thus, this assignment rule implies that if 10 percent of the area farmed with rice in district d
is farmed in cell i, 10 percent of the calls about rice received from farmers located in district d will
be assigned to cell i.
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KCC were introduced in January 2004 by the Indian Ministry of Agriculture and were

the first providers of general agricultural advice to farmers via mobile phone in India.16

KCC are available in all Indian states and allow farmers to call a toll-free number to get

answers to their questions. In total, during the 2006-2012 period, farmers made around

2.5 million calls to KCC. The number of calls increased substantially starting in 2009,

reaching over half a million per year between 2009 and 2011, and over eight hundred

thousands in 2012.17

For every call received in one of the 25 call centers that are part of the KCC network,

the agronomist collects basic information on the farmer (name, location and contact

information), date and time of the call, a brief description of the question, the crop for

which the query is made, and the response provided.18 The calls are answered by trained

KCC agricultural graduates, who address the query based on their knowledge and on a

database of previous answers to similar queries. Approximately 98 percent of the calls are

answered using this database. In case the agronomist is unable to answer the question,

the call is forwarded to a senior expert.19

Around 50 percent of the calls to KCC are about pests and how to deal with them.

In the responses, farmers receive detailed advice on which pesticide (if any) they should

use, as well as information on dosage and number of applications. The second most

represented category is calls on how to improve yields or – more specifically – on which

seed varieties to use to obtain higher yields (13 percent of calls). In these cases, farmers

often receive suggestions on which HYV seeds to use based on crop, location, and irrigation

system available. Other topics farmers consistently ask about are: fertilizers (10.5 percent

of calls), weather conditions (5.7 percent), advice for field preparation (4.6 percent),

market price information (3.6 percent), credit information (2.3 percent), and irrigation (1

percent).20

In Figure 4 we report the breakdown by month and topic of the call for the two largest

16 Figure C.2 shows the timing of introduction of the largest Indian providers of agricultural advice
via mobile phones. Other early development extensions, like aAQUA and NanoGanesh, established
in 2003 and 2004 respectively, focused on SMS-based advice on agricultural practices and irrigation
techniques, respectively. Until 2010, no other provider of general agricultural advice entered the
market.

17 The availability of this service has been largely advertised by the Indian government. The advertising
campaign mostly took the form of TV ads. Ads were broadcasted in both public and private TV
channels, and at times matching farmer’s preferences in different states.

18 The version of the data provided to us by the Department of Agriculture, Cooperation and Farmers
Welfare does not contain farmers’ names or contact information. Thus, we cannot identify farmers
that call multiple times.

19 According to an external evaluation of the KCC program, 84% of farmers expressed satisfaction with
the advice received, 99% said they would call again if there was a problem, and 96% were willing to
recommend the service to their friends.

20 In Appendix A we provide a detailed description of the keywords that we use to categorize calls to
KCC by topic. We classify calls by categories based on the description provided by the operator.
Based on these descriptions, we are able to classify 93 percent of the calls to KCC between 2006 and
2012.
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crops by cultivated area in India, rice – panel (a) – and wheat – panel (b). A number

of patterns emerge. First, the distribution of calls reflects the different farming season of

the two crops. Rice is mainly grown during the kharif season, where crops are grown

between June and September and harvested between October and February. On the other

hand, wheat is mainly grown in the rabi season, where crops are grown between October

and November and harvested between December and the Spring months. Second, the

composition of the calls is consistent with the agricultural calendar just described. For

example, rice farmers mostly ask questions about which seeds to use in May and June –

at the beginning of the growing season. Instead, when crops are fully grown, most of the

calls are about how to defend the plants from pests. Similar patterns can be observed for

wheat.

Finally, in Figure C.3 we report the overall distribution of calls to KCC by month, by

time of the day and by crop. The figure shows that most calls are received during Summer

months (panel a), that the peak number of calls is around late morning hours (panel b)

and that most questions are about rice and wheat (panel c).

2.4 Data on Technology Adoption and Agricultural Productivity

Our measures of technology adoption come from the Agricultural Input Survey (AIS),

conducted at five-year intervals by the Ministry of Agriculture in coincidence with the

Agricultural Census to collect information on input use by Indian farmers. Our main

empirical analysis focuses on the last two waves of the AIS, 2007 and 2012, while we

use earlier survey waves to document pre-existing trends.21 In the survey, all operational

holdings from a randomly selected 7 percent sample of all villages in a sub-district are in-

terviewed about their input use.22 The AIS reports information on land farmed with these

input technologies at the district-crop level. We compute the share of land farmed with

a given agricultural technology k in a given cell i using the following neutral assignment

rule: (
Areak

Area

)
idt

=
∑
c∈Oi

[(
Areak

Area

)
dct

×
(
Areaidc,t=2000

Areaid,t=2000

)]
(1)

The first element in the summation is the share of land farmed with technology k in

district d among the land farmed with crop c. This variable captures the rate of technology

adoption for a given crop in a given district and varies over time. The second element in

the summation is the share of land farmed with crop c in cell i, which is observed at cell

level in the FAO-GAEZ dataset and captures the initial allocation of land across crops

21 The Agricultural Input Survey runs from 1st July to June 30th of the following year. In the paper,
we use the terminology 2007 when referring to the survey carried out between July of 2006 and June
of 2007.

22 The AIS was not conducted in the states of Bihar and Maharastra before 2012. Thus, we exclude
these states from our analysis.
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in a given cell in the baseline year 2000.23 Thus, the product of first and second element

gives us an estimate of the share of land in cell i that is farmed under technology k and

crop c. Summing across the set of crops farmed in cell i (Oi), we obtain an estimate of

the share of land farmed with a given technology in a given cell.24

Effectively, the within-district variation generated by our assignment rule is driven by

the baseline crop composition of each cell coupled with district-crop level variation in

technology adoption. One potential concern with this assignment rule is that it may

generate non-classical measurement error. This would happen if, for example, new SMIS

towers are systematically constructed in cells (within a district) where farmers grow crops

characterized by fast technology adoption. To address this concern, in section 3.6 we

show that our treatment and control cells are balanced in terms of initial shares of area

farmed with crops that experienced faster increase in HYV adoption at district level. In

addition, in section 3.2, we show that treatment and control cells have similar trends

in technology adoption in the five years before the introduction of the SMIS program,

which rules out the concern that baseline crop composition captures long-term trends

in adoption. Finally, in Appendix B, we validate our cell-level measure of technology

adoption by using a sample of cells for which we observe actual adoption of HYV seeds

and irrigation at the village level from publicly available surveys.

The AIS covers the following agricultural input technologies: seeds – distinguished

between traditional and high-yielding varieties – chemical fertilizers, organic manures

and pesticides, agricultural machinery and agricultural credit. Our preferred measure of

technology adoption in agriculture is the share of land farmed with high-yielding varieties

(HYV) of seeds. These are hybrid seeds developed via cross-breeding in order to increase

crop yields. They combine desirable characteristics of different breeds, including improved

responsiveness to fertilizers, dwarfness, and early maturation in the growing season. HYV

seeds have been available in India since the Green Revolution (the IR8 rice, flagship of the

Green Revolution, was introduced in 1966), but new varieties are constantly developed

and introduced in the market. In the period between 2002 and 2013, 47 new varieties of

different oilseeds, cereals and vegetables including rice, groundnut, wheat, millet, soy and

cotton were introduced to the Indian market. Despite their early introduction and rapid

adoption in many areas of the country, a large share of the Indian agricultural land is still

not farmed using HYV seeds. The average share of HYV area across cells in our sample

23 The GAEZ dataset reports information on the amount of land – expressed in hectares – farmed with
a specific crop in a given cell. The data refers to the baseline year 2000. We focus on the 10 major
crops by area harvested in India, namely: rice, wheat, maize, soybean, cotton, groundnut, rape, millet,
sugar and sorghum. According to FAOSTAT, the area harvested with these 10 crops amounts to 135.5
million hectares and accounts for 76 percent of the total area harvested in India in 2000.

24 As an example, suppose that in district d, 20 percent of land farmed with rice and 50 percent of land
farmed with wheat are farmed using high-yielding variety seeds. Suppose also that 40 percent of land
in cell i that is part of district d is farmed with rice, while the remaining 60 percent is farmed with
wheat. Under our neutral assignment rule, we assign 38 percent of land in cell i to high-yielding
varieties: (0.2× 0.4) + (0.5× 0.6) = 0.38.
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in 2007 was 26 percent.

The data on agricultural productivity (yield) also come from the Ministry of Agricul-

ture. The data provide yearly information on covered area and production for each crop

at the district level. Our measure of agricultural productivity is crop yield, which is de-

fined as the quantity of crop produced (in metric tons) in a given area divided by the land

farmed with that crop (in hectares) in the same area. We construct our measure of crop

yield similarly to Jayachandran (2006), who use a weighted average of normalized yields

of the major crops farmed in India to generate a district-level measure of agricultural

productivity. Agricultural productivity at the cell level is then computed with a neutral

assignment rule similar to the one reported in equation (1) as follows:

log yieldidt =
∑
c∈Oi

[
log

(
quantity produced

area farmed

)
dct

×
(
Areaidc,t=2000

Areaid,t=2000

)]
(2)

Equation (2) defines yield in cell i as the weighted average of log crop yields for the ten

major crops by area farmed, where the weights are the share of area farmed with a given

crop in a cell at baseline.25

3 Empirics

Our empirical analysis proceeds in two steps. First, we use an event-study design to

document the evolution of farmers’ calls to KCC when new SMIS mobile phone towers

are introduced in areas without previous coverage. This evidence relies on monthly-level

variation in the number of farmers’ calls originated from a given location, around the

month of construction of the first tower in the area. The event-study also allows us to

document the role of language barriers in the diffusion of information. In particular,

we show that geographical differences in the diffusion of non-official languages among the

rural population affect the spatial availability of agricultural advice provided by the KCC.

We present these results in section 3.1.

Next, we study the real effects of access to information on technology adoption and

agricultural productivity. Since technology adoption and productivity are not observed

at the same high frequency as farmers’ calls, we cannot use the event-study design just

described for these outcomes.26 Instead, we propose an identification strategy that com-

pares locations where new mobile phone towers were proposed and constructed under

the SMIS program with similar locations where new towers were proposed but eventually

not constructed. We exploit variation in tower construction along with variation in local

25 We first normalize the yield for each of the 10 major crops in India by the mean yield of that crop in
each district (using the years 1998 to 2012 to construct the mean).

26 Data on adoption of agricultural technologies is observed at 5-year intervals in the Agricultural Input
Survey. Agricultural yields are instead observed at yearly level, which allows us to document the
timing of the effect around the construction of new towers.
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languages spoken by farmers to capture their ability to access phone-based services for

agricultural advice. We focus on the change in technology adoption and productivity be-

tween 2007 and 2012, with 2007 being the last wave in the AIS before the SMIS program,

and 2012 the first wave after the SMIS program. We discuss the identification strategy

in section 3.2 and present the results in sections 3.3 to 3.5.

Finally, in section 3.6 we present a set of additional robustness tests on our main empiri-

cal results, while in section 3.7 we discuss and empirically test for alternative explanations

to our results based on the impact of mobile phones on price dispersion and social learning.

3.1 Event-Study Evidence on Farmers’ Access to Information

We estimate the evolution of farmers’ calls to KCC around the introduction of new

mobile phone towers using the following specification:

Ln (1 + Calls)it = αi + αt +
+36∑

k=−12

βkD
k
it + εit (3)

The outcome variable in equation (3) is the natural logarithm of the total number of

calls originated from cell i in month t. Dk
it is a dummy equal to 1 if month t = k for cell

i, and captures the time relative to the month of introduction of the first tower covering

cell i, which we set at k = 0. We include the 12 months prior to the introduction of the

first tower and the 36 months after. The specification has calendar time and cell fixed

effects, denoted by αt and αi, respectively. Standard errors are clustered at the district

level.

The objective of this exercise is to exploit the different timing of construction of mobile

phone towers in different cells to document their impact on farmers’ calls. Notice that we

focus on cells that will eventually receive a mobile phone tower under the SMIS program

described in section 2. Notice also that in this first analysis we focus on the number of

calls, while the analysis of their content is discussed in detail in section 3.3.

Panel (a) of Figure 5 reports the estimated coefficients βk along with their 95 percent

confidence intervals. Several findings emerge. First, the coefficients are precisely estimated

zeros in the months preceding the introduction of the first tower in a cell. This indicates

that the timing of tower introduction is not correlated with pre-existing trends in calls.27

Second, within 4 months of the construction of the first tower we observe a significant

increase in calls for agricultural advice. The magnitude of the estimated coefficients

indicates, on average, a 5 to 10 percent increase in the number of calls to KCC in the first

year post tower construction. Third, this differential continues to grow over the next 18

months, reaching a 40 to 50 percent increase in calls three years after the construction of

the first tower in a cell.

27 Note that farmers can call KCC before the introduction of mobile phone towers using landlines, when
available.
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As discussed in section 2, KCC agricultural advice can in principle be accessed by any

farmer with either a landline or a mobile phone connection. KCC agronomists, however,

answer farmers’ calls only in one of the 22 official languages recognized in the Indian

Constitution.28 This effectively creates a barrier to the service for around 40 million

individuals, whose mother tongue is one of the about 100 additional non-official languages

spoken in India. Thus, even among areas that receive similar mobile phone coverage via

new SMIS towers, the ability of farmers to access dedicated information on agricultural

practices might vary by local language. The heterogeneous impact of mobile coverage

on calls depending on differences in local languages spoken by farmers is clearly visible

in Figure 1, which we briefly presented in the introduction and that we discuss here in

more detail. Panel (a) of Figure 1 shows in red the areas of the state of Odisha in which

the majority of the local population speaks non-official languages. As shown in panels

(b) and (c), the diffusion of non-official languages is not correlated with the diffusion

of agriculture (captured by the share of farmed land) or the increase in mobile phone

coverage experienced between 2007 and 2012. However, as shown in panel (d), the areas

where the majority of the local population speaks a non-official language experienced

significantly lower increase in phone calls made by farmers to KCC.

This example is illustrative of a strong statistical trend that we observe across all our

sample. In panel (b) of Figure 5 we estimate equation (3) separately for cells where

the majority of the local population speaks one of the 22 official languages and cells

where the majority speaks one of the non-official languages.29 The figure shows that,

after the construction of the first mobile phone tower, calls to KCC increase in both

groups. However, the increase is much more pronounced in areas where the majority of

the local population speaks the same languages as KCC agronomists. Within 3 years from

the construction of the first tower, calls in these cells increase by around 30 percentage

points more than in those where the majority of the local population speaks a non-official

language.

Since farmers’ calls to KCC were extremely rare before the construction of SMIS towers

in these areas, we also report the average number of calls per thousand farmers around

the tower construction month. This is Figure C.6 in Appendix C. A few interesting

stylized facts emerge from this figure. First, as shown in panel (a), there were almost

no calls to KCC in the period before the construction of the first tower in a given cell.

Second, there is a clear discontinuity in the number of calls per farmer around the date of

tower construction.30 Second, as shown in panel (b), the number of calls experienced an

28 See https://mkisan.gov.in/aboutkcc.aspx. Agronomists answering in each KCC location answer
calls in one (or more) of the official languages.

29 Data on the share of local population speaking non-official languages is sourced from the 2011 Indian
Census and available at the subdistrict level. To each cell whose centroid falls within a given subdistrict
we assign the share of local population speaking non-official languages in that subdistrict.

30The figure shows how the sharp increase in calls occurs in the month before the first tower is reported
to be constructed in a given cell, which is consistent with some delay in the reporting of the finalized
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exponential increase in the years following the construction of the first tower in a given

cell, reaching an average of about 20 calls per thousand farmers within five years from

the first tower construction in cells with a majority of official language speakers.

Taken together, the evidence in Figure 5 suggests that the expansion of mobile phone

coverage represents a large information shock to farmers, and that this shock has been

largely heterogeneous depending on linguistic differences between farmers and government

advisors working at KCC. In the next section, we study how differences in this shock to

access to information map into technology adoption and agricultural yields among farmers.

3.2 The Real Effects of Access to Information - Identification Strategy

In this section, we present our identification strategy to study the effect of farmers’

access to information on real outcomes, namely agricultural technology adoption and

productivity. Our identification strategy relies on the two sources of cross-sectional vari-

ation that emerge as important determinants of farmers’ calls in the event-study setting:

availability of mobile phone coverage and share of local population speaking non-official

languages. We think of the combination of mobile phone coverage and absence of language

barriers with agricultural advisors as a positive shock to information about agricultural

practices for farmers.

Our identification strategy exploits variation in the construction of mobile phone towers

under the Shared Mobile Infrastructure Scheme, or SMIS, described in section 2. In the

initial phase of this program, the Department of Telecommunications identified 7,871

potential locations for the construction of mobile phone towers. All the locations in

this initial list responded to certain specific criteria, including lack of existing mobile

phone coverage and number of individuals potentially covered by the new tower. For

identification purposes, we exploit the fact that not all the locations in the initial list

eventually received a tower. In some cases, towers were either relocated or not constructed.

Thus, we compare cells where towers were initially proposed and eventually constructed

with cells in the same administrative district where towers were initially proposed but

eventually not constructed.31 Our final sample consists of 6,320 cells, of which 4,569

in the treatment group and 1,751 in the control group. The summary statistics for the

main variables of interest are reported in Table 1. Figure 6 presents the geographical

distribution of treatment (in red) and control (in blue) cells across India, while Figure

C.5 zooms onto Rajasthan – the largest Indian state by area – superimposing the lattice of

10 × 10 km cells to show the level of geographical detail allowed by our data. On average,

construction.
31 We compute coverage for each new tower based on its technical specifications, which corresponds to

a 5 km coverage radius around its centroid. As discussed in Section 3.6, our analysis is robust to
using the share of land covered by SMIS towers instead of an indicator variable. Figure C.4 provides
a visual example of how we classify cells into treatment and control group based on proposed and
actual tower location.
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our sample includes 27 cells per district – 20 treated and 7 control. We further combine

this variation with data on the share of local population speaking non-official languages.

We report the geographical distribution of the share of local population speaking non-

official languages in Figure 7.

The identification relies on the assumption that locations where a tower was proposed

but eventually not constructed are a good control group for those that eventually received

a tower. The main challenge to our identification is that, although all proposed locations

had to meet specific criteria, the decision to relocate or cancel a tower is not random. For

example, based on conversations with the C-DoT officials responsible for the implemen-

tation of the program, towers were sometimes relocated (or canceled) when, upon visiting

the actual site, technicians realized that a relocation would increase the total population

covered, or when they discovered logistical issues related to terrain characteristics or lack

of an available connection to the electricity grid to power the tower. In what follows, we

formally test for differences in the probability of receiving coverage from new SMIS towers

based on cell observable characteristics and on pre-existing trends in technology adoption

and productivity. We also perform this balance test across cells with different shares of

the local population speaking a non-official language, conditional on receiving coverage

from new SMIS towers.

The results of the balance tests are reported in Table 2. The outcome in columns

(1) to (4) is an indicator variable – 1 (Tower) – which is equal to 1 for cells where a

new SMIS tower was proposed and eventually constructed, and 0 for cells where a new

SMIS tower was proposed but eventually not constructed. Column (1) shows that, in

line with the C-DoT officials’ account, the conditional probability of eventually receiving

a new tower is higher for cells with higher initial population and with flatter terrain,

while it does not appear to depend on the availability of a connection to the power grid.

Next, in column (2) we study whether pre-trends in agricultural technology adoption or

productivity affect the probability of eventually receiving a SMIS tower. As shown, we

find no significant differences in technology or productivity growth across treated and

control cells in the 5 years preceding the tower construction program. In column (3)

we then explore the correlation with a number of cell characteristics sourced from the

Village Survey of the Population Census of India.32 Treatment and control cells appear

to be comparable along a large set of observable characteristics including: agricultural

employment share, share of irrigated land, presence of a school, hospital or bank branch,

availability of landline phone connections, night lights intensity, income and expense per

capita. The only exception is average distance to the nearest town, which is shorter

for the treatment group, although very small in terms of magnitude. In column (4) we

32 We assign villages to 10 × 10 km cells based on the geographical coordinates for the centroid of
the village. The coordinates are obtained from http://india.csis.u-tokyo.ac.jp. Village-level
information is then aggregated to obtain cell-level characteristics.
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consider all previous variables together. The main takeaway is that population and terrain

ruggedness remain strong predictors of tower construction, while the other variables are

by and large statistically insignificant. In the empirical analysis we add these controls to

our specification and show that all our estimates are stable when including the observable

cell characteristics reported in Table 2. Finally, in column (5) we condition on cells

eventually receiving coverage from new SMIS towers, and explore the correlation between

all observable cell characteristics and an indicator variable equal to one for cells where the

majority of the population speaks a non-official language, and zero otherwise. As shown,

among the treated cells in our sample, the distribution of non-official language speakers

is uncorrelated with observable characteristics and pre-trends in technology adoption and

productivity.

3.2.1 First Stage

Our first-stage regression is as follows:

∆Coverid = αd + γ 1 (Tower)id + δXid + uid (4)

The outcome variable is the change in the share of land covered by the mobile phone

network between 2007 and 2012 in cell i, district d. It is important to underline that this

variable is constructed using actual mobile coverage data as reported by Indian telecom-

munication companies to GSMA, i.e. it is not the predicted increase in coverage con-

structed using SMIS tower location.33 The coefficient of interest is γ, which captures the

effect of tower construction under the SMIS program on the change in coverage in a given

cell. Xid is a vector of initial cell-level controls, which includes all the cell characteristics

reported in Table 2. We include in our specification district fixed effects (αd) and we

cluster standard errors at the district level. Finally, in all specifications we weigh each

cell by its population at baseline (2001).

Table 3 reports the first-stage results. The estimated coefficient in column (1) indicates

that cells covered by new SMIS towers experienced a 11 percentage points larger increase

in the share of land covered by mobile phones between 2007 and 2012 relative to the

control group. In column (2) we include the three main determinants of tower reloca-

tion according to C-DoT officials: population, availability of power supply and terrain

ruggedness. The magnitude of the estimated coefficient decreases from 0.11 to 0.073, and

remains highly statistically significant. Finally, in column (3) we add all the observable

socio-economic cell characteristics. Consistent with the results presented in Table 2, the

33 The tower construction program we use for identification is not the only driver of changes in mobile
phone coverage in these areas. During the same period, private companies also built mobile phone
towers across India to extend their services and expand their market shares. Thus, we do not expect
tower construction under SMIS to be the sole source of variation in change in GSMA coverage, even
in rural regions.
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size of the point estimate is unaffected by including these additional controls. According

to the specification in column (3), cells covered by new SMIS towers have, on average, 7.4

percentage points larger share of land covered by mobile phones in 2012 relative to the

control group (recall that all these cells have no coverage at baseline). Below the regres-

sions we report the Kleibergen and Paap (2006) first stage F-statistics for the validity of

the instrument. We can safely reject that the first stage is weak.

3.2.2 Second Stage: Empirical Specifications

We start by modelling the overall effect of mobile phone coverage on the outcomes of

interest – such as the number of calls for agricultural advice, the adoption of agricultural

technologies or productivity. If we denote a generic cell by i, with i ∈ d, where d denotes

a district, our regression model is:

∆yid = αd + β ̂∆Coverid + δXid + uid (5)

where ∆yid denotes the change in a given outcome between 2007 and 2012 and ̂∆Coverid

represents the change in the share of land covered by the mobile phone network over

the same period, instrumented with the variable 1 (Tower) from equation (4). Xid is the

vector of cell characteristics discussed in Table 2 and αd are district fixed effects.

The main coefficient of interest is β, which will be positive if mobile phones have a

positive impact on technology adoption and agricultural productivity. This coefficient

subsumes different mechanisms linking mobile phone coverage with technology adoption

and productivity. For example, the arrival of mobile phone coverage might promote

local economic opportunities more generally, increasing local income and thus demand

for agricultural products. Farmers might adopt new technologies to serve this increased

demand.34

To make progress in the direction of isolating the role of information, we expand equa-

tion (5) to account for the share of population in the cell speaking a non-official language,

hence with limited access to information about inputs and best agricultural practices

provided by the KCC. We estimate the following augmented specification:

∆yid = αd + β1
̂∆Coverid + β2 ∆Co ̂verid×NOLangid + β3NOLangid + δXid + uid (6)

where, compared to equation (5), we also include the share of population speaking a

non-official language (NOLangid) and its interaction with the change in mobile phone

34 Previous studies have also shown that, by reducing transaction costs on money transfers, mobile
phones can facilitate risk sharing among farmers (Jack and Suri 2014; Blumenstock et al. 2016). This
might, in turn, incentivize them to experiment with newer but riskier technologies. See Feder, Just,
and Zilberman (1985) for a discussion of the role of farmers’ risk-aversion in adoption models. This
mechanism is unlikely to be at play in our setting given the lack of mobile-based money transfer
technologies in rural India during the period under study.
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coverage.35 The coefficient β1 captures the effect of mobile coverage when the entire local

population speaks an official language (NOLangid = 0) and hence has full access to in-

formation about agricultural practices and inputs. The coefficient β2 instead captures the

differential impact of mobile phone coverage in cells with different shares of the population

speaking a non-official language. The sum of the two coefficients β1 and β2 identifies the

effect of mobile coverage on outcomes in the absence of access to a phone-based service

for agricultural advice (NOLangid = 1).

A potential concern with equation (6) is that the initial diffusion of non-official lan-

guages is not randomly assigned across locations. In section 3.6 we show that our results

are robust to controlling for additional interaction terms of ̂∆Coverid with other cell char-

acteristics, including measures of agricultural intensity, geographical isolation and local

income, that may potentially be correlated with the diffusion of non-official languages

in a given area. Finally, in section 3.7 we further augment our baseline specification to

take into account alternative potential mechanisms, such as the impact of mobile phones

on price dispersion and social learning, that may link mobile phone expansion in areas

with high prevalence of non-official languages to technology adoption and productivity,

including.

3.3 The Effect of Access to Information on Farmers’ Calls: By Topic

of the Call

We start by documenting the effect of mobile phone coverage on farmers’ calls for

agricultural advice. In particular, we use the identification strategy described in section

3.2 to study farmers’ access to information about specific technologies. Crucially for our

purpose, the call-level data from KCC report the exact question asked by the farmer –

as well as the answer provided by the agronomist. This allows us to distinguish between

calls in which farmers seek advice regarding specific agricultural technologies such as new

varieties of seeds, fertilizers, irrigation, or pesticides. Appendix A reports a detailed

description of the keywords used to classify calls in different categories, as well as several

examples. Documenting the type of information acquired by farmers is important in

order to trace a link between access to information and actual adoption of agricultural

technologies, which we study in the next section.

In column (1) of Table 4 we estimate the effect of mobile phone coverage on the change

in total number of calls to KCC between 2007 and 2012, as described by equation (5).

The estimated coefficient suggests that cells with 1 s.d. larger increase in mobile phone

coverage experienced a 23 percent larger increase in total calls by farmers. Next, in column

(2), we report the results from the unrestricted model in equation (6), where we allow

the effect of coverage to vary across areas facing different language barriers with KCC

35 The latter is instrumented by the interaction of the share of population speaking a non-official language
with the indicator variable for tower construction from equation (4).
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advisors. We interpret the estimated coefficient β1 as the combined effect of coverage and

access to a phone-based service for agricultural advice on farmers’ calls. Its magnitude

suggests that a 1 s.d. increase in coverage in cells where all farmers speak an official

language increases the number of calls by 26.6 percent. The coefficient β2, on the other

hand, indicates that calls for agricultural advice are less responsive to changes in coverage

when the local population does not speak an official language. The sum of the estimated

coefficients β1 and β2 (0.828 - 0.716 = 0.112) implies that, when the entire population

does not speak an official language, the effect of a 1 s.d. increase in mobile phone coverage

on calls is only 3.6 percent and not statistically different from zero.

Next, we focus on farmers’ calls about specific agricultural technologies: seed varieties,

fertilizers, irrigation, and pesticides. The results are shown in column (3) to (10). Odd

columns refer to the average effect of mobile phone coverage, while even columns allow for

the heterogeneous response to coverage depending on the share of non-official language

speakers. The results are in line with those on the total number of calls and very similar

for all agricultural technologies. An increase in mobile phone coverage is associated with

more calls for agricultural advice on specific technologies, but the effect is limited by the

existence of language barriers between the local population and the KCC advisors, as

shown by the negative and statistically significant coefficients on the interaction terms in

all specifications.

Overall, the results reported in Table 4 are consistent with the existence of an under-

served demand for information on farming techniques by Indian farmers. To the extent

that the information provided by call centers for agricultural advice is accurate, we can

think of farmers acquiring mobile phone coverage and having access to a phone-based

service for agricultural advice as receiving a positive shock to their information set on

farming techniques. This allows to study the effect of such shock on the actual adoption

of the technologies farmers ask about, as well as on local agricultural productivity. We

focus on these two outcomes in the following sections.

3.4 The Effect of Access to Information on Technology Adoption

In this section we study the effect of farmers’ access to information via call centers for

agricultural advice on technology adoption. We focus in particular on those technologies

farmers ask about in their phone calls to KCC, namely seed varieties, fertilizers, irrigation

and pesticides.

To study the effect of mobile phone coverage on adoption of a given technology we

estimate equations (5) and (6) using as outcome variable ∆
(

Areak

Area

)
id

, which is the change

in the share of land farmed with a given technology k (e.g. HYV seeds) in cell i located

in district d. Changes in outcomes are calculated using the last 2 waves of the AIS, which

were run in 2007 and 2012.

Column (1) of Table 5 reports the results of estimating equation (5) when the outcome
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variable is the change in the share of land farmed with HYV seeds – as opposed to

traditional seeds – in a given cell. The coefficient is positive and precisely estimated.

Its magnitude indicates that cells with a 1 s.d. larger increase in mobile phone coverage

experienced a 1.4 percentage points larger increase in the share of area farmed with HYV

seeds. Among the cells in our sample, the average area farmed with HYV seeds in the

baseline year 2007 was 26 percent. Thus, the 1.4 percentage point increase mentioned

above corresponds to a 5.3 percent increase in land cultivated with HYV seeds for the

average cell in our sample.

Column (2) reports the results of estimating equation (6), where we allow for the het-

erogeneous response to mobile phone coverage depending on the share of local population

speaking non-official languages. The estimated coefficient β1 captures the combined effect

of coverage and access to a phone-based service for agricultural advice. Its magnitude

indicates that areas with full coverage and where all farmers speak official languages ex-

perienced a 4.7 percentage points larger increase in share of land farmed with HYV seeds

between 2007 and 2012, compared to areas with no coverage (corresponding to 28 percent

of the share at baseline). The negative and statistically significant coefficient on the in-

teraction term β2 indicates that limited access to information about agricultural practices

reduces the impact of mobile phones on technology adoption. For any level of mobile

phone coverage increase, a 1 s.d. increase in the share of non-official language speakers

reduces the adoption of new agricultural technologies by 18 percent.36 This differential

captures the portion of mobile phone impact that we attribute to access to information

on agricultural practices.

In columns (3) and (4) we focus on the share of land under chemical fertilizers as an

additional measure of technology adoption. One important characteristic of HYV seeds

is that they are highly respondent to fertilizers (Dalrymple, 1974). Thus, we expect

adoption of HYV seeds by farmers to increase their demand for these complementary

inputs of production. Column (4) shows that cells with larger increase in mobile phone

coverage and no language barriers experienced an increase in area farmed with chemical

fertilizers of similar magnitude as the increase documented for HYV seeds. The negative

coefficient on the interaction term, although less precisely estimated compared to column

(2), suggests that language barriers with agricultural advisors limit the impact of mobile

phone coverage on adoption of fertilizers.

Next, we test for the effect of access to information on adoption of artificial irrigation.

Farming with HYV seeds does not necessarily require more water than farming with

traditional seeds. However, in order for HYV seeds to attain their full potential, they

do require a reliable source of irrigation (Dalrymple, 1974). Thus, we expect adoption of

HYV seeds by farmers to also increase their demand for irrigation. We study the effect on

irrigated area in columns (5) and (6), and find results that are similar, although smaller

36 This is the result of (-0.041×0.212) divided by the level effect of mobile phone coverage, 0.047.
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in magnitude, to the ones documented for chemical fertilizers.37 Finally, columns (7) and

(8) show a positive and significant effect of mobile coverage combined with access to a

phone-based service for agricultural advice on the share of land under chemical pesticides.

As in the previous columns, the point estimate on the interaction term suggests that the

impact of mobile phones on technology adoption is limited by the presence of language

barriers to obtain information about agricultural practices.

Overall, the results presented in Tables 4 and 5 are consistent with a positive and sig-

nificant effect of mobile phone coverage, coupled with access to a service for agricultural

advice, on technology adoption via the diffusion of information about new technologies.

We can use the estimates to calculate the implied elasticity of technology adoption to

access to information about a given technology. To compute this elasticity we divide the

estimated percentage increase in area farmed with a given technology by the estimated

percentage increase in farmers’ calls regarding that same technology for a given informa-

tion shock. For HYV seeds, the obtained elasticity indicates that a 1 percent increase

in mobile phone calls about this technology translates into a 0.78 percent increase in

its actual adoption. Similarly, we find elasticities of 0.64 for chemical fertilizers, 1.1 for

chemical pesticides and 3 for irrigation.

3.5 The Effect of Access to Information on Productivity

In this section we study the effect of farmers’ access to information via new mobile

phone towers on agricultural productivity.

We start by studying the effects of access to information on productivity using the same

specification used to study its effects on technology adoption. The results are reported

in Table 6. Column (1) shows a positive but insignificant effect of mobile phone coverage

on the change in agricultural productivity between 2007 and 2012. Column (2) shows

that the impact of mobile phones varies significantly across areas, depending on farmers’

access to agricultural advice. In areas where the entire population speaks an official

language, a 1 s.d. increase in mobile phone coverage leads to a 1.3 percent larger increase

in productivity, an effect 40 percent larger than the average. On the contrary, in areas

where 50 percent or more of the population speaks a non-official language the positive

effect of mobile phone coverage on productivity is completely offset, as implied by the

magnitude of the negative and significant coefficient on the interaction term β2.

In the remaining columns of Table 6, we investigate the differential returns to mobile

phone coverage and access to information across areas with different initial levels of agri-

37 The Agricultural Input Survey reports the use of fertilizers and irrigation by land farmed with HYV vs
traditional seeds. In Table C.6 we estimate our main specifications splitting fertilizers and irrigation
use in land farmed with HYV seeds and with traditional seeds. As shown, the effects of mobile
coverage coupled with the availability of services for agricultural advice on fertilizers and irrigation
are concentrated in areas farmed with HYV seeds. This is consistent with the complementarity
between these inputs described above.
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cultural productivity. In our sample of rural areas with no initial mobile phone coverage,

there is large variation in the baseline level of agricultural productivity. In 2007, the

average yield of a cell at the 75th percentile was almost twice as large as the one observed

in a cell at the 25th percentile. This gap in yield is similar to the one documented in rice

and wheat production between the top decile and the bottom decile of countries in the

world income distribution (Gollin, Lagakos, and Waugh 2014). We test for heterogeneous

effects across farmers with different initial productivity in columns (3) to (6), where we

estimate equation (6) separately for each quartile of initial productivity. The results in-

dicate that the effect of access to information is largest – and most precisely estimated

– for farmers with the lowest initial level of productivity. The point estimate on β1 for

this group is 0.052, around 30 percent larger than the average effect reported in column

(2). The effect is positive but small for farmers in the middle of the initial productivity

distribution and large but extremely noisy for farmers in the top quartile. The estimate

obtained for the lowest quartile indicates that providing access to information to farmers

at the 25th percentile of the productivity distribution can close up to 36 percent of the

productivity gap with farmers at the 75th percentile.

The nature of the agricultural yield data, which are available at the yearly level for

the period until 2017, allows us to further characterize the relationship between mobile

phone coverage, access to information and productivity. First, we explore the timing of

the impact. To this end, we exploit the staggered introduction of SMIS towers among

our treatment cells, estimating an event-study equation similar to (3). Notice that in

this specification we focus exclusively on cells initially selected for the SMIS program and

that eventually received a tower at some point between 2007 and 2010. The results are

reported in Figure 8, which plots the estimated coefficients βk on years relative to tower

construction along with their 95 percent confidence intervals. We find no pre-existing

trends in agricultural yields in the 4 years before the construction of the first tower in

a cell. The effect of new mobile phone towers on productivity materializes about one

year after their construction and increases in magnitude for the first three years. The

magnitude of the estimated coefficients indicates, on average, a 2 to 4 percent increase in

agricultural yields in the first five year post tower construction. The timing of the effect

is consistent with a permanent and long-lived shift in productivity.

Next, we expand our analysis of long-term effects by investigating the impact of access

to information 10 years after the introduction of the SMIS program. To this end, we

replicate the results presented in Table 6 using as outcome variable the decadal change in

agricultural yields between 2007 and 2017 (the latest year in our productivity data). The

results are reported in Table 7. Comparing the magnitudes of the estimated coefficients

with those in Table 6 suggests that the differential in productivity between areas covered

or not by mobile phones, and between areas with and without access to agricultural

advice, increases over time. Column 1 shows that the average effect of mobile phones
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on productivity over the ten-year horizon is positive and precisely estimated: a 1. s.d.

larger increase in mobile phone coverage is associated with a 1.7 percent larger increase

in productivity. Column (2) shows that, over ten years, a 1 s.d. increase in mobile phone

coverage in areas with full access to agricultural advice leads to a 2.2 percent larger

increase in productivity. This represents an additional 65 percent increase respect to the

differential observed over the period 2007-2012. The negative and significant coefficient

on the interaction term in column (2) also confirms the absence of effect of mobile phones

on productivity in areas where the share of population speaking a non-official language

exceeds 60 percent. Finally, the results in columns (3) to (6) display a pattern similar to

what observed in Table 6 with regard to the effect at different levels of initial productivity.

The estimates suggest that the returns to access to mobile phones and agricultural advice

are the largest for farmers in the initially least productive areas.

Overall, the results in this subsection show that increased access to information can

set rural areas on a different path of agricultural development, encouraging the adoption

of modern technologies that generate higher yields. This effect manifests rapidly and

persists over time. At the same time, the results indicate that language barriers between

agricultural advisors and local communities represent an obstacle to widespread access to

information, potentially increasing disparities between areas and significantly hampering

the returns of telecommunications infrastructure programmes designed to include rural

areas in the mobile phone network.

3.6 Robustness Checks

Our empirical model interprets the differential impact of mobile phone coverage in areas

with different diffusion of official languages as the effect of language barriers between

farmers and KCC agricultural advisors. A potential concern with this interpretation is

that the share of local population speaking non-official languages may not be randomly

assigned across geographical areas. In particular, it may be the case that areas with a

greater share of non-official language speakers are also characterized by different levels of

agricultural intensity, are more geographically isolated or simply poorer. In this case, one

would load on the interaction term between local languages and mobile phone coverage

also variation driven by other local conditions.

In section 3.2 we showed that, among the treated cells in our sample, the distribu-

tion of non-official language speakers is uncorrelated with observable characteristics and

pre-trends in technology adoption and productivity. In Table C.7 we bring this analysis

one step further, by presenting estimates of the parameters of a model that includes, in

addition to the baseline interaction of mobile phone coverage with the share of population

speaking non-official languages (column 1), also the interaction of coverage with measures

of: agricultural intensity (share of irrigated land and of population employed in agricul-

ture, column 2); geographical isolation (terrain ruggedness and distance from closest city,
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column 3); cell income (average income per capita and night lights intensity, column 4);

as well as a fully saturated specification that includes all these interaction terms (column

5). The upper panel of the table refers to calls to KCC, the central panel to technology

adoption and the lower panel to productivity. Irrespective of the outcome considered, the

inclusion of additional interaction terms makes virtually no difference to our results. If

anything, estimates of the parameters of interest become slightly larger compared to our

baseline specification. These results strongly support our interpretation of the key role

played by the (lack of) language barriers to access information, in explaining the positive

effect of mobile phones on technology adoption and productivity.

In section 2 we discuss the neutral assignment rule that we use to construct our cell-

level measures of technology adoption and productivity. A potential concern with this

assignment rule is that it may generate non-classical measurement error if new SMIS tow-

ers are systematically constructed in cells where farmers grow crops characterized by fast

technology adoption. To investigate this concern, in Table C.8 we report the correlation

between tower placement and the initial share of land cultivated with crops that experi-

enced the highest increase in HYV adoption at district level. As shown, treatment and

control cells are balanced in terms of their initial shares of area cultivated with the three

crops that the experienced the highest increase in HYV adoption within each district.

Another potential concern with our specification has to do with the roll-out of mobile

phone coverage, which could generate spatial correlation in the data and lead to incorrect

computation of the standard errors. To address this concern, we implement the Conley

(1999) correction for cross-sectional spatial correlation. We allow the radius of the spatial

kernel to vary between 50 km and 500 km. The results are reported in Table C.9. Ac-

counting for spatially correlated standard errors does not significantly affect the results.

Compared to the baseline specification that clusters the standard errors at the district

level, the estimates typically become slightly more precise and the coefficients of interest

remain statistically significant at conventional levels across all specifications.

Finally, we show that all our results are robust to using as an instrument for mobile

phone coverage the share of land covered by a new SMIS tower, instead of the indicator

variable used in the main analysis. Table C.10 presents the results from this analysis.

The first-stage estimates in column (1) suggest that to a 50 percent increase in the share

of land covered by a SMIS tower corresponds a 7.5 percent increase in mobile phone

coverage. Column (2) to (6) confirm that higher mobile phone coverage leads to a higher

number of calls to KCC about agricultural technologies, and that the effect is mitigated

by the presence of language barriers to access agricultural advice. Similarly, columns (7)

to (11) confirm the positive and significant effect of mobile phone coverage on technology

adoption and productivity in areas where the entire population can access agricultural

advice, whereas the effect is more limited - when not entirely offset - in areas where the

majority of the population does not have access to the agricultural advice provided by
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the KCC.

3.7 Alternative Mechanisms: Price Information and Social Learning

The goal of our empirical analysis is to test whether the arrival of mobile phone cover-

age, coupled with the availability of phone-based services for agricultural advice, favored

farmers’ adoption of modern technologies and – thus – increased agricultural productivity

via an information mechanism. The underlying assumption is that farmers might lack

information about the existence of a new technology or how to use it productively. This

is consistent with what we observe in the call data, where questions from farmers suggest

that they often do not know which new seed varieties best meet their specific needs, or

which are the best practices associated with their use.

Mobile phones, however, promote access to information above and beyond the informa-

tion on agricultural practices provided by the KCC. Jensen (2007) and Aker (2010), for

example, document that mobile phone diffusion reduced price dispersion in, respectively,

fishing markets in the Indian state of Kerala and grain markets in Niger. In the same

way, by allowing farmers to share information on crop prices in different markets, mobile

phones could have facilitated a more efficient allocation of goods across markets in our

sample and generated higher incomes for farmers, potentially helping them to pay the

fixed cost of technology adoption. While we do not observe prices at local agricultural

markets, we do observe the precise location of these markets. To assess the importance of

better access to price information in our context, we therefore augment our main specifi-

cation with agricultural market fixed effects. This allows us to compare outcomes across

farmers who are differently exposed to changes in mobile phone coverage and access to

agricultural advice, but that plausibly serve the same local market and therefore face the

same prices for their products.

We collect data on the latitude and longitude of agricultural markets in rural India from

the AGMARKNET service of the Ministry of Agriculture of India. We assign each cell

in our sample to its closest agricultural market, based on minimum geographical distance

within the same state.38 This gives us a total of 1,017 agricultural markets, each serving

on average six cells in our sample. The inclusion of this additional battery of market fixed

effects makes this a very demanding specification. Nonetheless, as shown in Table C.11,

the main results of this augmented specification are in line with our baseline estimates. In

terms of outcomes, we focus on the adoption of the four agricultural technologies studied

in section 3.4, and on agricultural productivity. The point estimates on the coefficient

β1, which captures the combined effect of mobile coverage and availability of phone-based

services for agricultural advice, are similar in magnitude to those presented in Tables 5

and 6. Also the negative coefficient on the interaction term β2 is similar in magnitude to

38 Evidence from India suggests that the probability of farmers selling their produces to a given market
decreases in travel time from the village to the market (Shilpi and Umali-Deininger, 2008).
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our baseline estimates, although less precisely estimated. Overall, these results confirm

that, even within narrowly defined areas where farmers face the same local demand and

price variations, access to information on agricultural practices is important to determine

the degree of modern technology adoption and productivity.

Another relevant mechanism linking mobile phone coverage to technology adoption is

social learning. Existing empirical work has shown that farmers can adopt new technolo-

gies through social interactions or by observing their peers (Bandiera and Rasul 2006,

Munshi 2004, Conley and Udry 2010). In our context, mobile phones may have facili-

tated the diffusion of shared knowledge among farmers and fostered the modernization of

agricultural technologies, regardless of the agricultural advice from KCC agronomists that

we emphasize in our analysis. One threat to the consistency of our estimates is, in par-

ticular, that areas with a higher proportion of non-official language speakers may also be

characterized by lower social learning, and for this reason do not adopt new technologies.

While the level of aggregation of our data does not allow us to directly observe farmers’

social networks, in Table C.12 we provide suggestive evidence that our results are robust to

accounting for indirect measures of social learning. Specifically, we augment our baseline

empirical model with additional interactions of mobile phone diffusion and observable

characteristics associated with easier social learning. In particular, we focus on the degree

of language concentration in a cell, since arguably what matters for social learning is

the extent to which individuals speak the same language, rather than the nature of the

language itself (official or non-official). The magnitude and precision of the coefficients

of interest are unchanged when we account for language concentration and its interaction

with mobile phone coverage.

To the extent that social networks span multiple cells, mobile phone coverage might

have spillover effects on nearby areas that are not directly covered by new towers. For

example, Cole and Fernando (2020) document that information provided through mobile

phones spread within farmers’ network, amplifying the effect of the agricultural extension

program. To test for this mechanism of information diffusion, in Table C.13 we study

the effect of mobile coverage in cells that are geographically adjacent to the treatment

cells, and compare them to the control cells using our main specification (6). Specifically,

we define the catchment area for a treatment cell as composed of all its adjacent cells,

with the exclusion of those that were themselves originally included in the treatment or

control group. Outcomes are then averaged across cells in this catchment area. The

results are reported in Table C.13. Overall, the evidence does not support a relevant

role of geographical spillovers within our sample, either across regions speaking official

languages or non-official languages.
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4 Concluding Remarks

In this paper, we provide large-scale evidence of the effects of accessing information

via mobile phones on the adoption of modern agricultural technologies and crop yields in

rural India, using detailed geo-referenced data on the construction of new mobile phone

towers, farmers’ calls for agricultural advice and the prevalence of local languages across

fine geographical areas. Our results indicate that mobile phones can have long-lasting

effects on farmers’ productivity by facilitating the adoption of modern technologies. Our

findings also suggest that the effects are larger for farmers with the lowest initial level of

productivity, highlighting the potential of mobile phones to reduce the large productivity

gap between farmers in India.

Access to mobile phones, however, is not in itself sufficient to foster this transition. A

key element is the ability of farmers to access high-quality agricultural advice on their

phones. We show that the benefits of mobile phone coverage are much more limited,

when not entirely absent, for farmers facing language barriers with agricultural advisors.

Our results imply that, in areas where 50 percent of more of the population cannot access

agricultural advice, an increase in mobile phone coverage does not lead to a modernization

of agricultural practices and technologies, nor to increased productivity for farmers.

As the number of mobile-based agricultural advisory services worldwide increases steadily

(GSMA, 2020), our results therefore provide a tale of cautious optimism about their ef-

fectiveness. On the one hand, the ability to connect with farmers in hard-to-reach rural

areas and to provide continuous and personalized advice during the agricultural cycle can

make mobile-based agricultural extensions such as the KCC an effective tool to lift farm-

ers out of poverty. On the other hand, however, the design and specific features of these

programs – such as the language in which agricultural advice is provided – may generate

an uneven access to information and exacerbate disparities among farmers, thus creating

winners and losers from their introduction. In the context of our study, this highlights

the importance of expanding the KCC service to the 40 million Indian farmers who do

not speak any officially-recognized language.

Our results refer to a period when the only available technology in India was effec-

tively 2G. In recent years, the country has made advancements towards the expansion

of 3G/4G mobile services and the universal availability of broadband Internet. These

improvements have been contemporaneously met with the rise of social media, online

information-sharing websites and smart-phone applications. These digital platforms can

further help the diffusion of information among farmers but they can also further exacer-

bate the gap between those who can and cannot access agricultural advice. This will make

it increasingly important to ensure universal access to mobile phones and information in

the years to come.
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Figures and Tables

Figure 1: Coverage and Farmers Calls by Language in the State of Odisha

(a) Non-official language speakers (b) Share of farmed land

(c) Change in mobile coverage (d) Change in calls to KCC

Notes: Panel (a) shows 10 × 10 km cells for the state of Odisha. Sub-district boundaries are labeled in
gray. Red contours denote areas for which more than half of the population speaks one of 99 non-official
languages. Source: Population Census of India (2011).
Panel (b) shows share of cell area under agricultural farming. Source: Village Census of India 2001.
Panel (c) shows the change in share of cell area under GSM mobile phone coverage between 2007-2012.
Source: GSMA.
Panel (d) shows change in (log) calls received by Kisan Call Center between 2007-2012. Source: Kisan
Call Center, Ministry of Agriculture
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Figure 2: Mobile Phone Coverage Evolution, India 1997-2012

1997 2002

2007 2012

Notes: The figure reports geo-referenced data on mobile phone coverage for all of India at five-year
intervals between 1997 and 2012. Source: GSMA.
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Figure 3: Timeline of tower construction under SMIS Phase I
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Notes: Source: Department of Telecommunications, India. Month captures the time at which the
construction of the tower is completed and the tower becomes operational.
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Figure 4: Distribution of calls on rice and wheat across agricultural
cycle

(a) Rice
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(b) Wheat
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Notes: Source: Kisan Call Center, Ministry of Agriculture
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Figure 5: Farmers’ Calls to KCC relative to Tower Construction - Event
Study

(a) Average effects
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Notes: The figure plots the coefficients βk obtained with the following specification Ln (1 + calls)it =

αi + αt +
∑+36

k=−12 βkD
k
it + εit. Where i cell, t month, Dk

it dummy equal to 1 if month t = k for cell i

(b) Heterogeneous Effects by Language
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Notes: The figure plots the coefficients βk obtained with the following specification Ln (1 + calls)it =

αi +αt +
∑+36

k=−12 βkD
k
it + εit. Where i cell, t month, Dk

it dummy equal to 1 if month t = k for cell i. We
estimate this specification separately for two groups of cells based on the share of population speaking
non-official languages.
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Figure 6: Treatment and Control cells under SMIS

Missing AIS Data        

Notes: The figure shows the 6,320 10×10 km identification cells distributed across treatment (red) and
control (blue) cells for all of India. State borders are marked in black. Treatment cells are those that
are both proposed and covered by mobile tower under SMIS Phase I. Control cells are those that are
proposed and not covered by mobile towers under SMIS Phase I. Grey areas represent states with missing
AIS information.
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Figure 7: Share of non-official languages in India

Notes: Share of non-official languages is the share of population speaking non-official languages in a
given sub-district. Source: Population Census of India (2011).
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Figure 8: Agricultural productivity relative to Tower Construction:
Event Study
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Notes: The figure plots the coefficients βk obtained with the following specification log(yield)it = αi +

αt +
∑+5

k=−4 βkD
k
it + εit. Where i denotes cell, t denotes year, Dk

it dummy equal to 1 if year t is k years
after (or before) the construction of first SMIS tower in cell i.

Table 1: Summary Statistics

Mean Median Std. Deviation N

∆ Coverage 0.756 0.926 0.321 6320
Non-official Languages (%) 0.075 0.000 0.212 6320
∆ HYV Share 0.034 0.018 0.068 6320
∆ Fertilizer Share 0.022 0.023 0.081 6310
∆ Irrigation Share 0.017 0.013 0.043 6320
∆ Pesticides Share 0.025 0.018 0.108 6142
∆ log(yield) 0.058 0.055 0.069 5033
∆ log (1+callsAll) 1.294 1.167 0.918 6320
∆ log (1+callsYield) 0.461 0.222 0.517 6320
∆ log (1+callsFertilizers) 0.374 0.193 0.436 6320
∆ log (1+callsIrrigation) 0.093 0.034 0.13 6320
∆ log (1+callsPesticides) 0.948 0.763 0.777 6320

Notes: Changes in variables are calculated over the 5-year interval 2007-2012. The unit of observation
is a 10×10 km cell and the sample includes all cells used for identification. Only cells with non-missing
∆ HYV values are considered.
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Table 2: SMIS coverage (1 (Tower)) and cell characteristics
(Balance Test)

Dependent variable: 1(Tower) 1(non-off. lang.| Tower)

(1) (2) (3) (4) (5)

Determinants of Tower Relocation
log(Population) 0.097*** 0.097*** 0.014

(0.021) (0.026) (0.024)
Power Supply 0.019 0.010 -0.059

(0.038) (0.049) (0.052)
Ruggedness -0.080*** -0.093*** 0.030

(0.018) (0.023) (0.024)

Pre-trends technology/productivity
∆ log(yield) (2002-2007) -0.034 0.090 0.199

(0.456) (0.435) (0.200)
∆ HYV Share (2002-2007) 0.091 -0.143 -0.355

(0.455) (0.438) (0.300)

Socio-economic characteristics
Agri. Workers/Working Pop. 0.078 0.109 -0.034

(0.076) (0.087) (0.040)
Percent Irrigated 0.060 0.047 -0.031*

(0.043) (0.046) (0.018)
Education Facility 0.071 -0.053 0.020

(0.057) (0.059) (0.022)
Medical Facility 0.026 0.025 -0.003

(0.032) (0.038) (0.016)
Banking Facility -0.032 -0.068 -0.013

(0.061) (0.062) (0.016)
# Phone conn. per 1000 people 0.002 0.003* -0.001

(0.001) (0.002) (0.001)
Dist. to nearest town(kms) -0.001*** -0.001 0.000

(0.000) (0.001) (0.000)
Night Lights (2006) -0.003 -0.012 -0.000

(0.006) (0.007) (0.002)
Income per capita 0.000 0.000 0.000

(0.000) (0.000) (0.000)
Expense per capita -0.000 -0.000 -0.000

(0.000) (0.000) (0.000)

District f.e. X X X X X
Observations 6,320 5,019 6,320 5,019 3,570
R-squared 0.193 0.174 0.182 0.192 0.706

Notes: The table reports the correlation of cell-characteristics across treatment and control cells (columns
1-4) and across cells with and without a majority of non-official language speakers, conditional on treat-
ment (column 5). The treatment variable 1 (Tower) in columns (1)-(4) is a dummy variable that takes
the value of 1 if a cell is both proposed and covered by a tower (Treatment) under SMIS Phase I and
takes the value of 0 if a cell is proposed and not covered (Control). The dependent variable in column
(5) that takes the value of 1 if the share of non-official language speakers is greater than 50% of the
total population in the cell, and 0 otherwise. Column (1) focuses on the main determinants of tower
relocation, i.e. cell’s population, the availability of power supply and average ruggedness; column (2) on
pre-trends in technology/productivity; column (3) on socio-economic characteristics; columns (4) and (5)
consider simultaneously all observable cell characteristics. All specifications include district fixed effects.
The sample includes all cells with zero cell phone coverage in 2006. Standard errors clustered at district
level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, *
p<0.1.
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Table 3: First Stage

Outcome: ∆ Coverage

(1) (2) (3)

1 (Tower) 0.110*** 0.073*** 0.074***
[0.015] [0.012] [0.012]

log(Population) 0.118*** 0.074***
[0.014] [0.013]

Power Supply 0.254*** 0.164***
[0.028] [0.029]

Ruggedness -0.168*** -0.139***
[0.019] [0.018]

Observations 6,320 6,320 6,320
F-stat 56.54 34.24 36.72
District f.e. X X X
Other Controls X

Notes: The table reports first-stage regression of ∆ Coverage on treatment variable 1 (Tower). The
unit of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area under mobile
coverage from 2007 to 2012, based on the data provided by telecom companies to GSMA. 1 (Tower) is a
dummy variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIS
Phase I and takes the value of 0 if a cell is proposed and not covered. All specifications control for district
fixed effect. Column (1) reports estimates of regression of ∆ Coverage on treatment variable. Column
(2) includes baseline controls of cell’s (log) population, the availability of power supply and average
ruggedness. Column (3) includes other controls for the cell including share of labor force employed in
agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access
to a medical facility, access to a banking facility, number of landline phone connections per 1000 people,
distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per
capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions
are weighted by the cell’s population. The value of the first stage Kleibergen-Paap Wald F-statistics for
the validity of the instruments is also reported in all columns. Standard errors clustered at district level
are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Mobile Coverage and Farmers’ Calls

Outcome: ∆ log (1+ number of calls)

Topic of the calls: All Seeds Fertilizer Irrigation Pesticides

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Coverage 0.742*** 0.828*** 0.322*** 0.357*** 0.269*** 0.304*** 0.059** 0.071** 0.656*** 0.731***
[0.199] [0.206] [0.113] [0.119] [0.099] [0.104] [0.028] [0.030] [0.170] [0.175]

∆ Coverage × Non-official Languages (%) -0.716** -0.300*** -0.296*** -0.099*** -0.619**
[0.316] [0.107] [0.103] [0.032] [0.261]

Non-official Languages (%) -0.185* -0.061** -0.047 -0.025* -0.169**
[0.096] [0.030] [0.030] [0.013] [0.084]

Observations 6,320 6,320 6,320 6,320 6,320 6,320 6,320 6,320 6,320 6,320
District f.e. X X X X X X X X X X
Baseline Controls X X X X X X X X X X
Other Controls X X X X X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on change in (log) calls received at Kisan Call Centers (KCC). The dependent
variable in Columns (1)-(2) is change in all calls received at KCC; Columns (3)-(4) is change in calls about seeds; Columns (5)-(6) is change in calls about fertilizers;
Columns (7)-(8) is change in calls about irrigation; Columns (9)-(10) is change in calls about pesticides. All changes are calculated between 2007-2012. The unit
of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile coverage between 2007-2012 instrumented using
1 (Tower). 1 (Tower) is a dummy variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIS Phase I and takes the value
of 0 if a cell is proposed and not covered. Odd columns reports the average effect, even columns report the heterogeneous effects depending on share of cell’s
population speaking non-official languages. All columns include district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s
(log) population, the availability of power supply and average ruggedness. Other controls for the cell include share of labor force employed in agricultural sector,
share of agricultural land that is irrigated, access to an educational facility, access to a medical facility, access to a banking facility, number of landline phone
connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per capita (in rupees). The
sample includes all cells with zero cell phone coverage in 2006. All regressions are weighted by the cell’s population. Standard errors clustered at district level
are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Mobile Coverage and technology adoption

Outcome: ∆ Technology Adoption

Technology: HYV Seeds Fertilizers Irrigation Pesticides

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Coverage 0.043** 0.047** 0.037 0.040* 0.023* 0.027* 0.062** 0.068**
[0.018] [0.019] [0.023] [0.023] [0.014] [0.015] [0.029] [0.029]

∆ Coverage × Non-official Languages (%) -0.041** -0.022 -0.027 -0.048
[0.019] [0.031] [0.017] [0.037]

Non-official Languages (%) -0.002 -0.013 -0.006 -0.013
[0.009] [0.017] [0.007] [0.013]

Observations 6,320 6,320 6,310 6,310 6,320 6,320 6,142 6,142
District f.e. X X X X X X X X
Baseline Controls X X X X X X X X
Other Controls X X X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on changes in technology adoption between 2007-2012. The dependent variable
in Columns (1)-(2) is change in share of area cultivated under HYV; Columns (3)-(4) is change in share of area cultivated under fertilizers; Columns (5)-(6) is
change in share of area cultivated under irrigation; Columns (7)-(8) is change in share of area cultivated under pesticides. All changes are calculated between
2007-2012. The unit of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile coverage between 2007-2012
instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIS Phase I and
takes the value of 0 if a cell is proposed and not covered. Odd columns reports the average effect, even columns report the heterogeneous effects depending on
share of cell’s population speaking non-official languages. All columns include district-fixed effects, baseline controls as well as other controls. Baseline controls
include cell’s (log) population, the availability of power supply and average ruggedness. Other controls for the cell include share of labor force employed in
agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access to a medical facility, access to a banking facility, number
of landline phone connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per capita
(in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions are weighted by the cell’s population. Standard errors clustered
at district level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Mobile Coverage and agricultural productivity

Outcome: ∆ log(yield) (2007-2012)

by baseline productivity (2007):
First Second Third Fourth

Quartile Quartile Quartile Quartile

(1) (2) (3) (4) (5) (6)

∆ Coverage 0.029 0.041** 0.052* 0.012 -0.004 0.052
[0.020] [0.020] [0.030] [0.029] [0.030] [0.603]

∆ Coverage × Non-official Languages (%) -0.093*** -0.046* -0.024 -0.025 -1.028
[0.033] [0.026] [0.021] [0.177] [8.199]

Non-official Languages (%) -0.014 -0.010 -0.000 -0.001 -0.235
[0.012] [0.010] [0.009] [0.065] [1.913]

Observations 5,033 5,033 1,254 1,174 1,181 1,254
District f.e. X X X X X X
Baseline Controls X X X X X X
Other Controls X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on changes in (log)
agricultural productivity between 2007-2012. Column (1) reports average effects. Column (2) reports
heterogeneous effects depending on share of cell’s population speaking non-official languages. Columns
(3)-(6) report heterogeneous effects depending on the baseline productivity levels in 2007. Column (3)
considers cells in the lowest quartile of baseline productivity and Column (6) cells in the highest quartile.
The unit of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered
under GSM mobile coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy
variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIS Phase I
and takes the value of 0 if a cell is proposed and not covered. All columns include district-fixed effects,
baseline controls as well as other controls. Baseline controls include cell’s (log) population, the availability
of power supply and average ruggedness. Other controls for the cell include share of labor force employed
in agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access
to a medical facility, access to a banking facility, number of landline phone connections per 1000 people,
distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per
capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions
are weighted by the cell’s population. Standard errors clustered at district level are reported in brackets
(number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Mobile Coverage and long-run agricultural productivity

Outcome: ∆ log(yield) (2007-2017)

by baseline productivity (2007):
First Second Third Fourth

Quartile Quartile Quartile Quartile

(1) (2) (3) (4) (5) (6)

∆ Coverage 0.053** 0.068*** 0.055* 0.004 -0.064 -0.059
[0.024] [0.025] [0.029] [0.048] [0.060] [0.454]

∆ Coverage × Non-official Languages (%) -0.117*** -0.030 -0.028 -0.199 0.769
[0.043] [0.033] [0.028] [0.594] [6.127]

Non-official Languages (%) -0.039** -0.007 -0.014 -0.077 0.180
[0.017] [0.009] [0.012] [0.213] [1.426]

Observations 5,023 5,023 1,254 1,170 1,181 1,254
District f.e. X X X X X X
Baseline Controls X X X X X X
Other Controls X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile phone coverage on changes in long-run
agricultural productivity between 2007-2017. Column (1) reports average effects. Column (2) reports
heterogeneous effects depending on share of cell’s population speaking non-official languages. Columns
(3)-(6) report heterogeneous effects depending on the baseline productivity levels in 2007. Column (3)
considers cells in the lowest quartile of baseline productivity and Column (6) cells in the highest quartile.
The unit of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered
under GSM mobile coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy
variable that takes the value of 1 if a cell is both proposed and covered by a tower under SMIS Phase I
and takes the value of 0 if a cell is proposed and not covered. All columns include district-fixed effects,
baseline controls as well as other controls. Baseline controls include cell’s (log) population, the availability
of power supply and average ruggedness. Other controls for the cell include share of labor force employed
in agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access
to a medical facility, access to a banking facility, number of landline phone connections per 1000 people,
distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per
capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions
are weighted by the cell’s population. Standard errors clustered at district level are reported in brackets
(number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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A Calls to Kisan Call Center

In this section we describe the methodology followed to extract crop information and
type of query made by farmers in all calls to Kisan Call Centers (KCC). KCC agronomists
record the correct information on crop and the category of the query in less than 10% of
the calls. In the remaining cases, we use the details contained in two text fields available
in the KCC data, i.e. farmer’s query and agronomist’s answer, to obtain the information.
To illustrate the procedure, consider the following calls received by the KCC:

Sno Date State District Crop QueryType QueryText Answer

1 07/22/2009 Uttar Ambedkar - - Fertilizer Dose Give NPK 120kg
Pradesh Nagar in Paddy 60kg 60kg/hac

2 09/07/2009 Madhya Sagar - - How to control Spray Chlorpyrifos
Pradesh temite in soyabean? @ 30ml/pump

In Call 1, the farmer calls KCC to get information on the fertilizer dose in Paddy (Rice).
The information on crop in the KCC data is missing under the “Crop” field but it is clearly
available in the text of the query (variable “QueryText”). Similarly in Call 2, the farmer
inquires how to control termites (which is incorrectly recorded as “temites” in QueryText)
for Soyabean crop. Similar to the previous call, both the crop information and category of
call are missing in the recorded data. We use the information in “QueryText” to deduce
what is the crop the farmer is enquiring about (Soyabean). We also use the information
in the “Answer” field which recommends using Chlorpyrifos to assign the “QueryType”
of the call as Pesticides.

A.1. Categorizing Crops

We extract crop information based on methodology described above – using information
within the text of the query or the answer of the KCC agronomist to the query. In many
cases, crops names are recorded in Hindi. For example, Rice is commonly known as Dhan
in Hindi. Similarly, Wheat is recorded as Gehun; Maize is recorded as Makka. We detect
all these instances and convert the corresponding crop names to English.

A.2. Categorizing Query Categories

We classify calls into 17 broad categories.1 Here we describe in detail the assignment
of the main query categories used in the paper – calls on seeds, fertilizers, irrigation and
pesticides.

Calls on Seeds: We classify as farmers’ calls on seeds those calls made to obtain
information on hybrid seed varieties or calls made to inquire about seed varieties. We
use information in either the text of the query or in the answer of the KCC agronomist.

1 These categories include Pesticides, Yields, Fertilizers, Weather, Field Preparation, Market Informa-
tion, Credit, Cultivation, Irrigation, Contact Information, Soil Testing, Mechanization, Government
Schemes, Seed Availability, Crop Insurance, General Information and Others. The first seven cate-
gories are associated with 90% of the calls. We collapse all categories with less than 1% of calls into
a combined category of “Others” which in total makes up about 10% of the calls.
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In particular, we classify as calls on seeds: (i) calls directly asking about the hybrid
varieties related to a crop (ii) inquires or answers about specific high-yielding varieties
seeds. For example, farmers ask about the following high-yielding varieties of wheat:
DHM-1, WH-542, UP-2338, HUW-468, PVM-502 or about the following high-yielding
varieties of cotton: RCH-134, RCH-208, RCH-317, MRC-6301, MRC-6304. Table A.1
below provides an illustrative example for this:

Table A.1: Sample calls on Seeds

Sno Date State District Crop QueryType QueryText Answer

1 10/17/2010 Haryana Mahendra- Wheat Seeds Improved varieties PBW-343,WH-711,
-garh of wheat WH-542,DBW-1

2 03/28/2009 Andhra East Maize Seeds Asked about Recommended
Pradesh Godavari Varieties DHM-107 or 109

Calls on Fertilizers: We classify as farmers’ calls on fertilizers: (i) calls seeking general
information on fertilizer dosage (ii) calls directly asking remedies for nutrient deficiencies
in crops (iii) queries or replies based on required dosage of specific fertilizers, e.g. N-P-
K or Urea (iv) calls seeking information on plant growth regulators, seed treatment or
solution to leaf drop. For example, in many calls farmers asks about the dosage of specific
fertilizers, e.g. D.A.P. (Diammonium phosphate). In few other calls, the agronomist
prescribes specific amounts to be used for different chemicals of the fertilizer N-P-K.
Table A.2 below provides an illustrative example from our exercise.

Table A.2: Sample calls on Fertilizers

Sno Date State District Crop QueryType QueryText Answer

1 02/17/2011 Punjab Amritsar Wheat Fertilizers Sulphur deficiency Apply 100 kg gympsum
in wheat per acre before sowing

2 07/03/2009 Uttar Firozabad Rice Fertilizers Fertilizer dosage N-120kg, P-60kg
Pradesh in rice K-120kg, ZN-20kg/hec.

3 07/20/2011 Punjab F.G.Sahib Rice Fertilizers D.A.P dose 27 kg per acre
in paddy

4 12/06/2010 West Midnapore Rape Fertilizers Flower dropping Apply Zinc Sulfate
Bengal (East) in mustard 2 gram/liter water

5 08/09/2011 Mahara- Parbhani Cotton Fertilizers Stunted growth Spray Urea 100 grams
-shtra of cotton in 10 litre water

Calls on Irrigation: In order to classify calls on irrigation, we use farmers’ queries
seeking information: (i) directly about irrigation practices (ii) or about water management
in the field. Table A.3 below provides an illustrative example: in the first two calls farmers

3



ask about the suitable time for particular stages of irrigation. In the last case, a farmer
is seeking information on the quantity of water for irrigating the field.

Table A.3: Sample calls on Irrigation

Sno Date State District Crop QueryType QueryText Answer

1 01/15/2011 Madhya Sehore Wheat Irrigation Suitable time for 2nd At tillering stage
Pradesh irrigation in wheat i.e. 40-45 days

2 03/11/2010 Bihar Palamu Wheat Irrigation Minimum irrigation 20-25,40-45,70-75,90
schedule for wheat -95,105 days after sowing

3 06/10/2011 Bihar Rohtas Rice Irrigation Water management 5-6 cm water given
in rice in rice field

Calls on pesticides: We classify as farmers’ calls on pesticides: (i) calls seeking infor-
mation specifically about pesticides (ii) agronomist suggesting the use of certain pesticides
like Quinalphos, Carbofuran and Chlorpyrifos 2 (ii) calls asking about solutions for pest
infection (iii) calls related to plant protection (iv) inquiries about weed control. Table
A.4 below provides few examples of calls on pesticides after applying our methodology
described above.

Table A.4: Sample calls on Pesticides

Sno Date State District Crop QueryType QueryText Answer

1 08/29/2010 Andhra Anant- Groundnut Pesticides Asked about spodoptera Spray Quinalphos
Pradesh -hapur damage in groundnut 2ml/1 liter water

2 07/26/2011 Punjab Mansa Rice Pesticides Info. regarding control of Apply dilute 1 litre
termite in rice Chlorpyrifos 20ec in 2 litres

3 11/29/2009 Rajasthan Alwar Wheat Pesticides Prevention of Nematod Use Carbofuran 3G 20KG.
problem in Wheat per hectare soil treatment

4 09/04/2010 Uttar Bareilly Rice Pesticides Insect Control Apply Endosulphon 35EC
Pradesh in rice at 1.5 ml/lit of water

5 03/09/2011 Gujarat Surat Sugarcane Pesticides Ask for weed control Suggested
hand weeding

6 08/09/2011 Bihar Deoghar Rice Pesticides Plant protection Given details about
in paddy plant protection

2 Quinalphos is an pesticide widely used in India for wheat, rice, coffee, sugarcane, and cotton. Car-
bofuran is a pesticide used to control insects in a wide variety of field crops, including potatoes, corn
and soybeans. Chlorpyrifos is a pesticide used to kill a number of pests, including insects and worms.
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B Data Validation

In this section, we validate our two measures of technology adoption — i.e. share of
cell area farmed under HYV seeds and share of cell area that is irrigated (described in
Section 3.4) — using alternative datasets that are publicly available to researchers.

1. HYV Adoption. Information on the use of HYV seeds at village level is seldom
available. Two publicly available survey data sets that report such information are the
ICRISAT Village Dynamics in South Asia (VDSA) and the Tamil Nadu Socioeconomic
Mobility Survey (TNSMS) conducted by the Economic Growth Center at Yale University.
Both data sets are based on household surveys that collect information on cultivation
practices. Both data sets record the crops farmed by each household, the total area
farmed under each crop and how much of the farmed area is cultivated with improved or
HYV seed variety.

The two data sets differ in their finest identifiable geographic unit of observation. The
finest geographical unit of observation in the VDSA data is a village. The survey covers
17 villages in 2012 with non-missing information on HYV seeds.3 While the TNSMS
covers more villages than VDSA, it does not provide village identifiers like VDSA. The
finest geographical unit of observation available in TNSMS is much larger than our 10 ×
10 km cell and therefore it is not well suited to validate our measure. Moreover, while
TNSMS only covers villages within the state of Tamil Nadu, VDSA spans the five states
of Andhra Pradesh, Gujarat, Karnataka, Madhya Pradesh and Maharashtra. Therefore,
we use information available in the VDSA data to cross-validate our measure of HYV
adoption, as described next.

We compare our measure of share of area farmed with HYV seeds against the one
reported in the VDSA data. To do so, we use information in the VDSA data to calculate
the total area farmed in each village under a given crop as well as how much of that area is
cultivated using HYV seeds. Similarly, we use the share of area farmed with a given crop
in a given cell using the data from the Agricultural Input Survey and the methodology
described in section 3.4. We then map each 10 × 10 km cell to VDSA villages based on
village centroids. This provides us with 30 observations at the cell-crop level for which we
observe HYV adoption in both the VDSA and with our measure. Appendix Figure B.1
shows that our measure is positively correlated with the VDSA measure: the slope of the
line is 1.06 and statistically significant (t = 4.33).

2. Share of irrigated land. Next, we compare our measure of share of cell area that
is irrigated against the same measure constructed using information available in Village
Census of India 2001. The village census reports information on area of land irrigated
for all Indian villages for the year 2001. We construct a measure of share of irrigated
land area for each of our 10 × 10 km cell by assigning villages to cells based on the
geographical coordinates for the centroid of the village. We compare our measure of share
of cell area irrigated in the year 2001 against the one reported in the village census data.
This provides us with 25,017 observations at the cell level for which we observe share of
irrigated land in both the Village Census and with our measure. Appendix Figure B.2

3 VDSA only covers six villages consistently between 2002-2012. Four of these villages are in the state
of Maharashtra. This limits our ability to compare our measure of changes in share of area under
HYV seeds as AIS does not cover Maharashtra until 2012. We therefore only compare the levels of
share of area under HYV seeds in 2012.

5



Figure B.1: Data Validation: HYV Adoption
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Notes: The graph reports the share of crop area under HYV as calculated from ICRISAT VDSA (Village Dynamics in
South Asia) micro data against the share of crop area under HYV seeds as calculated from AIS (Agricultural Input Survey).
Each dot represents a cell-crop observation for the two measures of share of area under HYV seeds in 2012. The figure has
30 observations and the slope of the line is 1.06 (t = 4.33). The dashed gray line is the 45 degree line.

shows that our measure is positively correlated with the Village Census measure: the
slope of the line is 1.1 and statistically significant (t = 43.75).

Figure B.2: Data Validation: Share of irrigated area
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Notes: The graph reports the share of cell area under irrigation as calculated from Villages Census of India 2001 against
the share of cell area under irrigation as calculated from AIS (Agricultural Input Survey) 2001. Each dot has 1 percent of
observation based on the share of irrigated area measured through AIS and represents the average of the two measures of
share of area under irrigation in 2001. The slope of the line is 1.1 (t = 43.75). The dashed gray line is the 45 degree line.
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C Empirics: Additional Results

Figure C.1: Mobile Phone Coverage by night lights intensity
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Notes: The average share of land with mobile phone coverage in each decile is calculated for the 4 years
in which the Agricultural Input Survey was conducted: 1997, 2002, 2007 and 2012. night lights intensity
data refers to 1996.

Figure C.2: Indian Providers of Agricultural Advice Services:
A Timeline
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Figure C.3: Distribution of calls made to kisan call center
(a) Calls by Calendar Month
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Figure C.4: An example of classification of cells into
treatment and control groups

Panel A

Panel B

Panel C

Notes: The figure provides an illustration of classification of cells into treatment (red) and control (blue)
group. Panel A shows area covered by a proposed tower under SMIS. Panel B shows the area covered
by an actual tower eventually constructed. Panel C shows the assignment of cells into treatment and
control groups.
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Figure C.5: Treatment and Control Cells
(Rajasthan State)

Notes: 10×10 Km treatment (red) and control (blue) cells for the state of Rajasthan. District boundaries
are labeled in black. Treatment cells are those that are both proposed and covered by mobile tower under
SMIS Phase I. Control cells are those that are proposed and not covered by mobile tower under SMIS
Phase I.
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Figure C.6: Evolution of calls to KCC per farmer around tower
construction

(a) One year before and after tower construction, by month
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(b) Two years before and four years after tower construction, by year
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Notes: The figure plots the number of monthly calls per 1000 farmers in a cell in the one year before
and one year after the cell received its first tower under SMIS Phase I (Panel (a)), and the number of
yearly calls per 1000 farmers in a cell in the two years before and four years after the cell received its
first tower under SMIS Phase I (Panel (b)).
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Table C.5: Summary Statistics for Cell Characteristics

Mean Median Standard N
Deviation

log (Population) 10.06 9.99 0.76 6320
Power Supply 0.78 0.92 0.29 6320
Ruggedness 0.47 0.20 0.89 6320
Agri. Workers/Working Pop. 0.57 0.57 0.14 6320
Agri. Land/Cultivable Area 0.45 0.47 0.22 6320
Percent Irrigated 0.36 0.27 0.32 6320
∆ HYV Share (2002-2007) 0.01 0.01 0.06 5019
∆ HYV Share (1997-2002) 0.05 0.04 0.11 4986
Literacy Rate 0.43 0.44 0.12 6320
Education Facility 0.85 0.91 0.17 6320
Medical Facility 0.35 0.29 0.26 6320
Banking Facility 0.06 0.03 0.10 6320
# Phone conn. per 1000 people 1.22 0.30 3.33 6320
Dist. to nearest town(kms) 26.40 20.00 22.31 6320
Night Lights (2006) 1.43 0.72 1.84 6320
Income per capita 75.46 16.76 351.36 6320
Expense per capita 66.44 16.15 268.09 6320

Notes: The unit of observation is a 10×10 km cell. The variables reported are (log) population, fraction
of villages in the cell with access to power supply, ruggedness of the cell, share of agricultural workers,
share of cultivable land under agriculture, percentage of irrigated land, changes in share of land under
HYV, literacy rate, education facility, medical facility, banking facility, number of telephone connections
per 1000 people, night lights, distance to nearest town, (monthly) income per capita, and (monthly)
expense per capita.
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Table C.6: Robustness: Mobile Coverage and Technology Adoption

Outcome: ∆ Technology Adoption

Technology: Fertilizers in areas Fertilizers in areas Irrigation in areas Irrigation in areas
under HYV not under HYV under HYV not under HYV

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Coverage 0.047** 0.051** -0.005 -0.005 0.035** 0.042** -0.012 -0.015*
[0.022] [0.023] [0.013] [0.014] [0.018] [0.019] [0.008] [0.009]

∆ Coverage × Non-official Languages (%) -0.030 0.007 -0.054*** 0.027
[0.024] [0.017] [0.020] [0.017]

Non-official Languages (%) 0.001 -0.013** -0.019* 0.013*
[0.015] [0.005] [0.010] [0.007]

Observations 6,310 6,310 6,310 6,310 6,320 6,320 6,320 6,320
District f.e. X X X X X X X X
Baseline Controls X X X X X X X X
Other Controls X X X X X X X X

Notes: The table reports IV-2SLS estimates of the effect of mobile coverage on the share of area under fertilizers (Columns 1-4) and the share of area irrigated
(Columns 5-8) between 2007-2012. The unit of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM mobile
coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes the value of 1 if a cell is both proposed and covered by
a tower under SMIS Phase I and takes the value of 0 if a cell is proposed and not covered. Odd columns reports the average effect, even columns report the
heterogeneous effects depending on share of cell’s population speaking non-official languages. Columns (1)-(2) and (5)-(6) report the estimates for area cultivated
with HYV seeds and Columns (3)-(4) and (7)-(8) report the estimates for area not cultivated with HYV seeds. All columns include district-fixed effects, baseline
controls as well as other controls. Baseline controls include cell’s (log) population, the availability of power supply and average ruggedness. Other controls for the
cell include share of labor force employed in agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access to a medical
facility, access to a banking facility, number of landline phone connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income per
capita (in rupees), and expense per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions are weighted by the
cell’s population. Standard errors clustered at district level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, *
p<0.1.
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Table C.7: Robustness: additional interaction terms

Baseline + ∆ Coverage + ∆ Coverage + ∆ Coverage + ∆ Coverage
× Agriculture × Isolation × Income × ((2)+(3)+(4))

(1) (2) (3) (4) (5)

Panel A: ∆ log(1+ number of calls)

∆ Coverage 0.828*** 1.149** 0.680*** 0.809*** 0.965*
[0.206] [0.508] [0.181] [0.202] [0.578]

∆ Coverage × Non-official Languages (%) -0.716** -0.690** -0.878* -0.713** -0.916
[0.316] [0.331] [0.481] [0.307] [0.729]

Non-official Languages (%) -0.185* -0.203* -0.234** -0.188* -0.273
[0.096] [0.108] [0.117] [0.098] [0.202]

Observations 6,320 6,320 6,320 6,320 6,320

Panel B: ∆ Technology Adoption (HYV seeds)

∆ Coverage 0.047** 0.095** 0.044** 0.049*** 0.093*
[0.019] [0.044] [0.018] [0.018] [0.049]

∆ Coverage × Non-official Languages (%) -0.041** -0.050*** -0.049 -0.041** -0.059
[0.019] [0.019] [0.046] [0.019] [0.056]

Non-official Languages (%) -0.002 -0.006 -0.004 -0.002 -0.008
[0.009] [0.010] [0.016] [0.009] [0.019]

Observations 6,320 6,320 6,320 6,320 6,320

Panel C: ∆ log(yield)

∆ Coverage 0.041** 0.091* 0.037* 0.046** 0.091**
[0.020] [0.051] [0.021] [0.020] [0.045]

∆ Coverage × Non-official Languages (%) -0.093*** -0.095*** -0.101** -0.095*** -0.107**
[0.033] [0.034] [0.039] [0.032] [0.042]

Non-official Languages (%) -0.014 -0.016 -0.016 -0.014 -0.018
[0.012] [0.011] [0.013] [0.011] [0.013]

Observations 5,033 5,033 5,033 5,033 5,033

District f.e. X X X X X
Baseline Controls X X X X X
Other Controls X X X X X

Notes: The table tests the robustness of our baseline IV-2SLS estimates to the inclusion on an additional set of interaction
terms. The dependent variable in Panel A is the change in (log) calls received at KCC; in Panel B is the change in share
of area cultivated under HYV; in Panel C is the change in (log) agricultural productivity between 2007-2012. Column (1)
reports baseline estimates of equation (4). Column (2) includes additionally the interactions of share of labor force employed
in agricultural sector and share of agricultural land that is irrigated × ∆ Coverage. Column (3) includes the interactions
of distance to nearest town and average ruggedness × ∆ Coverage. Column (4) includes the interactions of night lights
intensity and income per capita × ∆ Coverage. Column (5) includes simultaneously all the interactions in the previous
columns. The unit of observation is a 10×10 km cell. ∆ Coverage is the change in the share of cell area covered under GSM
mobile coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes the value of 1
if a cell is both proposed and covered by a tower under SMIS Phase I and takes the value of 0 if a cell is proposed and not
covered. All columns include district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s
(log) population, the availability of power supply and average ruggedness. Other controls for the cell include share of labor
force employed in agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access to a
medical facility, access to a banking facility, number of landline phone connections per 1000 people, distance to nearest town
(in kms.), night lights intensity, income per capita (in rupees), and expense per capita (in rupees). The sample includes all
cells with zero cell phone coverage in 2006. All regressions are weighted by the cell’s population. Standard errors clustered
at district level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table C.8: SMIS coverage (1 (Tower)) and share of cell area under 3
crops with highest increase in HYV in district

Dependent variable: 1(Tower)

(1) (2) (3)

% of cell area under:
Top 1 crop 0.076

[0.125]
Top 2 crops 0.051

[0.092]
Top 3 crops 0.116

[0.081]

Observations 6,320 6,320 6,320
R-squared 0.195 0.195 0.195
District f.e. X X X
Baseline Controls X X X
Other Controls X X X

Notes: The table reports the correlation of share of cell area under crops in our sample (used in equation
1) across treatment and control cells from a multivariate OLS regression of probability of being covered
by a tower under SMIP Phase I (1 (Tower)) on share of cell area covered by crops as reported in FAO. All
specifications include district fixed effects, baseline controls and other controls. Column (1) reports the
coefficient on the share of cell area farmed under the crop with highest percent increase in HYV share in
cell’s district between 2007 and 2012; Column (2) reports the coefficient on the share of cell area farmed
under the top 2 crops with highest percent increase in HYV share in cell’s district; Column (3) reports
the coefficient on the share of cell area farmed under the top 3 crops with highest percent increase in HYV
share in cell’s district. Baseline controls include cell’s (log) population, the availability of power supply
and average ruggedness. Other controls for the cell include share of labor force employed in agricultural
sector, share of agricultural land that is irrigated, access to an educational facility, access to a medical
facility, access to a banking facility, number of landline phone connections per 1000 people, distance to
nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per capita (in
rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions are weighted
by the cell’s population. Standard errors clustered at district level are reported in brackets. Significance
level: *** p<0.01, ** p<0.05, * p<0.1.
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Table C.9: Robustness: Effects of mobile phone coverage,
Standard errors adjusting for spatial correlation

∆ log(1+ # of calls) ∆ Tech. Adoption ∆ log(yield)
(HYV Seeds)

(1) (2) (3) (4) (5) (6)

∆Coverage 0.742 0.828 0.043 0.047 0.029 0.041
Spatial Correlation, threshold:50 km [0.169]*** [0.177]*** [0.015]*** [0.016]*** [0.017]* [0.017]**
Spatial Correlation, threshold:150 km [0.185]*** [0.192]*** [0.016]*** [0.017]*** [0.018] [0.018]**
Spatial Correlation, threshold:300 km [0.193]*** [0.196]*** [0.016]*** [0.017]*** [0.020] [0.019]**
Spatial Correlation, threshold:500 km [0.206]*** [0.201]*** [0.016]*** [0.016]*** [0.021] [0.020]**

∆ Coverage× Non-official Languages (%) -0.716 -0.041 -0.093
Spatial Correlation, threshold:50 km [0.242]*** [0.019]** [0.020]***
Spatial Correlation, threshold:150 km [0.308]** [0.019]** [0.024]***
Spatial Correlation, threshold:300 km [0.318]** [0.017]** [0.025]***
Spatial Correlation, threshold:500 km [0.302]** [0.017]** [0.024]***

Non-official Languages (%) -0.185 -0.002 -0.014
Spatial Correlation, threshold:50 km [0.077]** [0.007] [0.006]**
Spatial Correlation, threshold:150 km [0.099]* [0.008] [0.007]**
Spatial Correlation, threshold:300 km [0.119] [0.007] [0.007]**
Spatial Correlation, threshold:500 km [0.133] [0.006] [0.006]**

Observations 6,320 6,320 6,320 6,320 5,033 5,033
District f.e. X X X X X X
Baseline Controls X X X X X X
Other Controls X X X X X X

Notes: The table reports results for alternate spatial clustering across cells. All definitions and specifi-
cations are the same as in Table 4, Table 5, and Table 6. Alternate standard errors adjusted for spatial
correlation are provided below the estimates and are estimated using the (Conley 1999) correction for
spatial correlation across cells, allowing the relationship to vary between 50 km and 500 km. Significance
level: *** p<0.01, ** p<0.05, * p<0.1.
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Table C.10: Robustness: continuous measure (2SLS)
(2007-2012)

Outcome: ∆ Coverage ∆ log (1+ number of calls)

Topic of the calls: All Seeds Fertilizer Irrigated Pesticides
(1) (2) (3) (4) (5) (6)

% covered by SMIS 0.149***
[0.017]

∆ Coverage 0.546*** 0.189** 0.161*** 0.042*** 0.489***
[0.132] [0.074] [0.062] [0.015] [0.121]

∆ Coverage × Non-official Languages (%) -0.560** -0.227*** -0.219*** -0.062** -0.469**
[0.221] [0.085] [0.075] [0.025] [0.200]

Non-official Languages (%) -0.170** -0.058** -0.040 -0.017* -0.152**
[0.071] [0.026] [0.025] [0.010] [0.066]

Observations 6,320 6,320 6,320 6,320 6,320 6,320
F-stat 79.60

Outcome: ∆ Technology Adoption ∆ log(yield)

Technology: HYV Seeds Fertilizers Irrigation Pesticides
(7) (8) (9) (10) (11)

∆ Coverage 0.030*** 0.025* 0.017 0.037* 0.026**
[0.011] [0.014] [0.011] [0.019] [0.011]

∆ Coverage × Non-official Languages (%) -0.027* -0.011 -0.020 -0.044 -0.065***
[0.014] [0.024] [0.016] [0.031] [0.022]

Non-official Languages (%) 0.000 -0.011 -0.005 -0.015 -0.008
[0.008] [0.013] [0.005] [0.011] [0.008]

Observations 6,320 6,310 6,320 6,142 5,033

District f.e. X X X X X X
Baseline Controls X X X X X X
Other Controls X X X X X X

Notes: The table reports the robustness of our baseline IV-2SLS estimates to using as the treatment
variable the share of cell covered by SMIS towers instead of an indicator variable. The unit of observation
is a 10×10 km cell. Column (1) reports the first-stage regression of ∆ Coverage on cell area covered by a
SMIS tower (% covered by SMIS tower). In Columns (2)-(11), ∆ Coverage is the change in the share of
cell area under GSM mobile coverage from 2007 to 2012, instrumented using % of cell covered by SMIS.
Columns (2)-(6) estimate the effect of change in mobile coverage on change in number of (log) calls to the
KCC. Column (2) estimates the effect on total calls, Column (3) on calls about seeds, Column (4) on calls
about fertilizers, Column (5) on calls about irrigation, and Column (6) on calls about pesticides. Columns
(7)-(10) estimate the effect of change in mobile coverage on change in technology adoption. Column (7)
focuses on share of land under HYV seeds, Column (8) on share of land under fertilizers, Column (9) on
share of irrigated land, Column (10) on share of land under pesticides. Columns (11) estimates the effect
of change in mobile coverage on change in agricultural productivity. All columns include district-fixed
effects, baseline controls as well as other controls. Baseline controls include cell’s (log) population, the
availability of power supply and average ruggedness. Other controls for the cell include share of labor
force employed in agricultural sector, share of agricultural land that is irrigated, access to an educational
facility, access to a medical facility, access to a banking facility, number of landline phone connections per
1000 people, distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and
expense per capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All
regressions are weighted by the cell’s population. Standard errors clustered at district level are reported
in brackets (number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table C.11: Price effects: effects of mobile coverage after market fixed
effects

Outcome: ∆ Technology Adoption ∆ log(yield)

Technology: HYV Seeds Fertilizers Irrigation Pesticides
(1) (2) (3) (4) (5)

∆ Coverage 0.054*** 0.050** 0.027 0.053** 0.038**
[0.017] [0.023] [0.017] [0.023] [0.018]

∆ Coverage × Non-official Languages (%) -0.033 -0.026 0.001 -0.053 -0.161
[0.028] [0.044] [0.025] [0.060] [0.108]

Non-official Languages (%) -0.007 -0.020* -0.003 -0.020 -0.028
[0.008] [0.011] [0.007] [0.014] [0.031]

Observations 6,092 6,081 6,092 5,914 4,840
District f.e. X X X X X
Baseline Controls X X X X X
Other Controls X X X X X
Market f.e. X X X X X

Notes: The table tests for alternate channel of price effects of mobile phone coverage by including
agricultural market fixed-effects to our specification (6). The unit of observation is a 10×10 km cell.
∆Coverage is the change in the share of cell area covered under GSM mobile coverage between 2007-2012
instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes the value of 1 if a cell is both
proposed and covered by a tower under SMIS Phase I and takes the value of 0 if a cell is proposed and not
covered. The dependent variable in Column (1) is change in share of area cultivated under HYV; Column
(2) is change in share of area cultivated under fertilizers; Column (3) is change in share of area cultivated
under irrigation; Column (4) is change in share of area cultivated under pesticides; Column (5) is change
in (log) agricultural productivity. All changes are calculated between 2007-2012. All columns include
market-fixed effects in addition to district-fixed effects, baseline controls as well as other controls. Baseline
controls include cell’s (log) population, the availability of power supply and average ruggedness. Other
controls for the cell include share of labor force employed in agricultural sector, share of agricultural land
that is irrigated, access to an educational facility, access to a medical facility, access to a banking facility,
number of landline phone connections per 1000 people, distance to nearest town (in kms.), night lights
intensity, income per capita (in rupees), and expense per capita (in rupees). The sample includes all cells
with zero cell phone coverage in 2006. All regressions are weighted by the cell’s population. Standard
errors clustered at district level are reported in brackets (number of clusters = 285). Significance level:
*** p<0.01, ** p<0.05, * p<0.1.
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Table C.12: Mobile coverage and language concentration

Outcome: ∆ Technology Adoption ∆ log(yield)
(HYV share)

(1) (2)

∆ Coverage 0.043** 0.048*
[0.021] [0.025]

∆ Coverage × Non-official Languages (%) -0.052*** -0.083***
[0.019] [0.031]

Non-official Languages (%) -0.006 -0.017
[0.009] [0.012]

∆ Coverage × Language concentration 0.030 -0.044
[0.056] [0.052]

Language concentration 0.014 0.004
[0.009] [0.007]

Observations 6,319 5,032
District f.e. X X
Baseline Controls X X
Other Controls X X

Notes: The table tests for effects of language concentration for our estimates. The unit of observation
is a 10×10 km cell. ∆Coverage is the change in the share of cell area covered under GSM mobile
coverage between 2007-2012 instrumented using 1 (Tower). 1 (Tower) is a dummy variable that takes
the value of 1 if a cell is both proposed and covered by a tower under SMIS Phase I and takes the
value of 0 if a cell is proposed and not covered. The dependent variable in Column (1) is change
in share of area cultivated under HYV, and Column (2) is change in (log) agricultural productivity.
All changes are calculated between 2007-2012. All columns control for language concentration (and
× ∆ Coverage), where language concentration in cell i is defined as: Language Concentrationi = 1 −∑

l(share of cell i population speaking language l)2. All columns include district-fixed effects, baseline
controls as well as other controls. Baseline controls include cell’s (log) population, the availability of
power supply and average ruggedness. Other controls for the cell include share of labor force employed
in agricultural sector, share of agricultural land that is irrigated, access to an educational facility, access
to a medical facility, access to a banking facility, number of landline phone connections per 1000 people,
distance to nearest town (in kms.), night lights intensity, income per capita (in rupees), and expense per
capita (in rupees). The sample includes all cells with zero cell phone coverage in 2006. All regressions
are weighted by the cell’s population. Standard errors clustered at district level are reported in brackets
(number of clusters = 285). Significance level: *** p<0.01, ** p<0.05, * p<0.1.
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Table C.13: Spillover effects of mobile coverage on nearby cells

Outcome: ∆ Technology Adoption ∆ log(yield)

Technology: HYV Seeds Fertilizers Irrigation Pesticides
(1) (2) (3) (4) (5)

∆ Coverage -0.004 0.004 0.017 0.051 0.030
[0.031] [0.031] [0.020] [0.054] [0.032]

∆ Coverage × Non-official Languages (%) 0.007 -0.002 -0.015 -0.044 -0.066
[0.057] [0.075] [0.032] [0.062] [0.064]

Non-official Languages (%) 0.020 0.001 -0.006 0.003 0.003
[0.019] [0.024] [0.010] [0.020] [0.023]

Observations 5,772 5,747 5,772 5,646 4,531
District f.e. X X X X X
Baseline Controls X X X X X
Other Controls X X X X X

Notes: The table reports IV-2SLS estimates of the effect of change in mobile phone coverage in a cell on
technology adoption and agricultural productivity for nearby cells. A catchment area for a treatment cell
is defined as all other cells adjacent to the treatment cell, excluding any cells that were originally either
a treatment cell or control cell. Outcomes are then averaged across spillover cells. The specification is
identical to the main specification 6 for estimating direct effects. The dependent variable in Column (1)
is change in share of area cultivated under HYV; Column (2) is change in share of area cultivated under
fertilizers; Column (3) is change in share of area cultivated under irrigation; Column (4) is change in share
of area cultivated under pesticides; Column (5) is change in (log) agricultural productivity. All changes
are calculated between 2007-2012. ∆Coverage is the change in the share of cell area covered under GSM
mobile coverage between 2007-2012 for the treatment cell instrumented using 1 (Tower). 1 (Tower) is a
dummy variable that takes the value of 1 if the treatment cell is both proposed and covered by a tower
under SMIS Phase I and takes the value of 0 if a cell is proposed and not covered. All columns include
district-fixed effects, baseline controls as well as other controls. Baseline controls include cell’s (log)
population, the availability of power supply and average ruggedness. Other controls for the cell include
share of labor force employed in agricultural sector, share of agricultural land that is irrigated, access
to an educational facility, access to a medical facility, access to a banking facility, number of landline
phone connections per 1000 people, distance to nearest town (in kms.), night lights intensity, income
per capita (in rupees), and expense per capita (in rupees). The sample includes all cells with zero cell
phone coverage in 2006. All regressions are weighted by the cell’s population. Standard errors clustered
at district level are reported in brackets (number of clusters = 285). Significance level: *** p<0.01, **
p<0.05, * p<0.1.
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