
1 
 

Demography, growth and robots in 

advanced and emerging economies 

 

Matteo Lanzafame§x 

Abstract 

This paper provides estimates of the impact of demographic change on labor productivity 
growth, relying on annual data over 1961-2018 for a panel of 90 advanced and emerging 
economies. We find that increases in both the young and old population shares have 
significantly negative effects on labor productivity growth, working via various channels—
including physical and human capital accumulation. Splitting the analysis for advanced and 
emerging economies shows that population ageing has a greater effect on emerging economies 
than on advanced economies. Extending the benchmark model to include a proxy for the 
robotization of production, we find evidence indicating that automation reduces the negative 
effects of unfavorable demographic change—in particular, population aging—on labor 
productivity growth.         
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Demography, growth and robots in 

advanced and emerging economies 

 

 

1. Introduction 

This paper investigates the effects of demographic change on labor productivity growth. 

Demographic trends have often been highlighted in the literature as one of the main drivers 

of long-run growth and development. Focusing on emerging economies, several studies have 

illustrated how the positive effects of the demographic transition—particularly in terms of 

boosting population growth while reducing dependency ratios—have played a major role in 

Asia’s remarkable growth performance over the last three decades (e.g. Bloom and Williamson, 

1998). Similarly, predictions of a forthcoming African growth miracle are usually based on 

population projections indicating that many African countries could soon be enjoying a 

substantial demographic dividend, with high fertility rates and declining mortality leading to 

significant increases in working-age population and labor force growth (Bloom et al., 2017). 

Conversely, a number of contributions (e.g. Aksoy et al., 2019; Favero and Galasso, 2016) 

focus on the increasing ‘demographic drag’ affecting advanced economies, by exploring how 

and to what extent current demographic trends—and, in particular, population ageing—may 

be ushering in a new era of slow growth consistent with the so-called ‘Secular Stagnation’ 

hypothesis. Furthermore, this switch from growth-boosting factor to drag on the economy 
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may also soon shape the economic impact of demographic change in many emerging 

economies, increasingly characterized by a gradual decline in fertility rates and rising life 

expectancy. Indeed, demographic projections from the United Nations (2019) are consistent 

with a scenario in which emerging economies follow the advanced along the path towards 

ageing and shrinking populations (Figure 1). 

 

Figure 1. Demographic evolution in advanced and emerging economies 
 

 

Notes: Data from United Nations (2019). Shares for advanced and emerging economies are weighted averages. Countries 
included in the advanced and emerging economies groups are reported in Table A.1 in the Appendix.  
 

The economic challenges arising from population ageing are typically associated to 

increasing elderly dependency ratios, which jeopardize the sustainability of pension systems, 

put additional stress on the welfare state and social safety nets, and damage economic growth 

10
20

30
40

50

1950 2000 2050
year

Young dependents Workers

Old dependents

World age−group shares

20
30

40
50

1950 2000 2050
year

Advanced economies Emerging economies

Young dependents share (ages 0−19)

40
45

50
55

1950 2000 2050
year

Advanced economies Emerging economies

Workers share (ages 20−59)

0
10

20
30

40

1950 2000 2050
year

Advanced economies Emerging economies

Old dependents share (ages 60+)



4 
 

by reducing the number of people available for work.1 The impact of this direct channel linking 

demography and growth can be conveniently illustrated by decomposing per-capita GDP 

(𝑌 𝑃⁄ ) through the following identity:   

 

𝑌
𝑃 = 	

𝑌
𝐸 ∙

𝐸
𝑊𝐴𝑃 ∙ 	

𝑊𝐴𝑃
𝑃 																																																																																																																(1) 

 

where 𝑌 is income, population is indicated with 𝑃, employment with 𝐸, and working-age 

population with 𝑊𝐴𝑃. Thus, per-capita GDP is expressed as the product of labor productivity 

(𝑌 𝐸⁄ ), the employment to working-age population ratio (𝐸 𝑊𝐴𝑃⁄ ), and the share of 

working-age population (𝑊𝐴𝑃 𝑃⁄ ). In growth-rate form, (1) can be specified as: 

 

𝑔!"# = 𝑔$! + 𝑔%& + 𝑔&'(                         (2) 

   

which shows that the growth rate of per-capita GDP /𝑔!"#0 is equal to the sum of the growth 

rates of labor productivity /𝑔$!0, the employment to working-age population ratio (𝑔%&) and 

the share of working-age population (𝑔&'(). Thus, for any given 𝑔$! and 𝑔%&, per-capita GDP 

growth will be faster the higher the growth rate of the share of working-age population. This 

is the direct channel via which the demographic transition, causing the growth rate of working-

age population to outpace that of overall population, provided a boost to living standards first 

 
1 Several studies provide projections for the potential macroeconomic and fiscal effects of population aging (e.g., Cutler 
et al., 1990; Borsch-Supan, 2003; Vogel, Ludwig, and Börsch-Supan, 2013; National Research Council, 2012; Sheiner, 
2014). 
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in advanced and then in emerging economies. As the demographic dividend gradually turns 

into a drag, this mechanism starts working in reverse: population ageing is reflected in a 

declining 𝑔&'( and, all else constant, a falling 𝑔!"#. 

Demographic change, however, can affect growth performance in more ways than the 

rather mechanical direct effects working via 𝑔&'(. Specifically, this impact may be exacerbated 

by a further negative effect generated by unfavorable demographics: namely, slower 

productivity growth. A shrinking working-age population can reduce productivity growth via 

various channels—including slower accumulation of physical capital, human capital and 

knowledge. Meanwhile, an increasing share of old workers can be expected to have a negative 

impact too as, beyond a certain age, workers’ capabilities start decreasing. Similarly, to the 

extent that significant learning-by-doing and on-the-job experience are critical complements 

to education (e.g. Marconi, 2018), an increase in the share of young workers can also be 

expected to reduce aggregate productivity growth. While most of the early literature on the 

topic focuses on the direct channel linking demographics to output growth, the indirect 

channel working via labor productivity growth is arguably more important. Indeed, since 

productivity growth is the ultimate engine of economic growth in the long-run, the indirect-

channel effects of demographic change can have a long-lasting impact in shaping the 

enhancement of living standards in advanced and emerging economies. 

Policy reforms can help cushion the negative impact of an ageing population on 

𝑔&'(—for instance, by raising the normal retirement age, incentivizing greater labor force 

participation (e.g. by women), and relaxing constraints on migrant inflows. However, the key 

contribution to weakening the link between demographics and labor productivity growth can 
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only come from the latter’s main driver—that is, technological progress. In this respect, the 

increasing adoption of automation technologies in firms’ production processes is particularly 

relevant. Robots can substitute for manual labor in specific tasks where automated machines 

are more productive than humans, thus complementing workers’ skills in a variety of jobs and 

making workers more productive. As a result, greater robotization should be associated with 

a lower impact of ageing on labor productivity growth.      

All of this raises several policy-relevant questions regarding the strength of the 

relationship between demographic change and the growth of living standards, the main 

channels underpinning it, and the role of automation technologies in offsetting the effects of 

unfavorable demographics on productivity growth.  

This paper aims at exploring these issues, carrying out an empirical investigation of the 

relationship between demographic change and labor productivity growth. We rely on annual 

data over 1961-2018 for an unbalanced panel of 90 advanced and emerging economies. To 

control for endogeneity and capture the feedback effects between demographic change, labor 

productivity growth and its other determinants, we follow Aksoy et al. (2019) and adopt an 

estimation framework based on a Panel Vector Autoregressive model with exogenous 

regressors (PVARX). We find that labor productivity growth is significantly affected by 

demographic change, with increases in both young and old population shares having a negative 

impact. Splitting the analysis for advanced and emerging economies shows that population 

ageing has a smaller effect on the former than the latter—an outcome consistent with the view 

that advanced economies, which are further ahead in the demographic transition, have 

progressively adopted technologies to cushion the negative effects from ageing. Extending the 
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benchmark model to consider whether automation—arguably the most important 

technological innovation in this context—is playing such a role supports this hypothesis. We 

find robust evidence that robots adoption reduces the negative impact of unfavorable 

demographic change—in particular, population aging—on labor productivity growth.     

The remaining part of the paper is organized as follows. Section 2 provides a review of 

the literature on the relationship between demography and growth. Section 3 describes the 

data and the empirical approach adopted in the paper, while Section 4 presents and discusses 

the estimation results. Finally, Section 5 concludes.    

 

2. Literature review   

The impact of demographic change on economic growth and standards of living is the subject 

of a large empirical literature. Typically, studies select output growth or per-capita output 

growth as the dependent variable in a growth regression framework, aiming to isolate the 

demographic effects while controlling for other growth determinants (e.g. Aksoy et al. 2019; 

Bloom and Williamson, 1998; Bloom et al., 2000; Wei and Hao, 2010). These contributions 

provide fairly consistent evidence of statistically and economically significant effects of 

demographic change on economic growth. However, they also share a common drawback—

that is, as the decomposition in (1) shows, focusing on output or per-capita output makes it 

difficult to disentangle the direct impact of demographic change on growth from its indirect 

effects working via labor productivity growth.  

As mentioned, the indirect-channel demographic impact on productivity is arguably 

more significant, but its effects are also more complex. To the extent that different age groups 
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are characterized by different productivity levels (e.g. because effort, physical and mental 

capabilities vary with age), the evolving demographic features of a population will influence 

aggregate labor productivity growth via compositional effects on the workforce. Additional 

forces can also work via various feedback channels. Standard life-cycle theory suggests that 

demographic change can affect labor productivity growth through a changing consumption-

saving pattern. As consumption expenditure normally takes up a larger share of income after 

retirement, ageing populations can be expected to experience a declining private saving rate. 

Similarly, there is a large agreement on the negative effects of ageing on public savings, due to 

pensions and healthcare gradually taking up a larger share of government expenditure. All else 

constant, these adjustments will bring about lower investment and slower physical capital 

accumulation, with negative repercussions on productivity growth. Similarly, the economy-

wide accumulation of human capital is likely to decline with population ageing, as a result of a 

shrinking share of individuals involved in acquiring education and/or updating their skills via 

training and learning-by-doing with on-the-job experience. Further negative feedback effects 

of ageing on productivity growth may be associated to slower knowledge production and 

innovation. 

Overall, the empirical evidence on the relevance of these mechanisms is so far mixed. 

Lindh and Malmberg (1999) consider the impact of age structure on transitional growth in a 

convergence framework, using 5-year averaged panel data for OECD countries over 1950-

1990. Their results point to robust demographic effects on the growth rate of GDP per 

worker, with a positive impact associated to the share of 50-64 year olds and negative effects 

for the 65-plus age-group. Relying on a panel dataset including 87 advanced and emerging 
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economies, Feyrer (2007) finds that changes in the age structure of the workforce are 

significantly correlated with productivity growth. In particular, his estimates suggest that a 5% 

fall in the share of workers between the ages of 40 and 49 over a ten-year period is associated 

with an annual decline of l-2% in productivity. More recently, Maestas et al. (2016) study the 

relationship between aging and growth across US states, finding that a 10% growth in the 

share of population ages 60 and over decreases per-capita GDP growth by 5.5%—with two-

thirds of the fall determined by a reduction in labor productivity growth, and only one-third 

by slowing labor force growth. In relation to the production of new ideas and the accumulation 

of knowledge in the economy, Jones’s (2010) findings indicate that young and middle-aged 

cohorts boost innovation and, conversely, older cohorts slow it down. Similarly, relying on 

patent application data, Aksoy et al. (2019) show that population ageing has significantly 

negative effects on the rate of innovation. Focusing on the United States, Feyrer (2008) finds 

that the median age of innovators and managers who adopt new ideas (respectively, at about 

48 and 40) remained fairly stable over 1975-95. Meanwhile, Karahan et al. (2019) link the 

continued decline in the US startup rate to demographic change. They note that this ‘startup 

deficit’ has significantly shifted the US firms’ age distribution, which is a key determinant of 

aggregate productivity.  

Contrasting results and evidence are provided, among others, by Cruz and Ahmed 

(2018). Based on five-year averaged data over 1950–2010 for a large country panel, estimations 

in this study fail to provide significant evidence that demographic change affects labor 

productivity—while indicating that the large impact of demographics on per-capita GDP 

growth is mostly due to changes in the child-dependency ratio. In line with Jones (2010) and 



10 
 

Feyrer (2008), Acemoglu et al. (2014) provide cross-country evidence of a causal impact of 

manager age on creative innovations—but find that this influence turns out to be small, once 

the effect of the sorting of young managers to firms that are more open to disruption is 

factored in.  

Meanwhile, assessing the cross-country evidence of a negative link between population 

ageing and per-capita GDP growth, Acemoglu and Restrepo (2017) conclude that this relation 

is not statistically significant—suggesting that this outcome may be due to technological 

change, spurred by incentives to develop and adopt labor-saving innovations in aging societies. 

In a more recent contribution (Acemoglu and Restrepo, 2021), the same authors provide 

support for the hypothesis that population aging leads to greater (industrial) automation, as it 

creates a shortage of middle-aged workers specializing in manual production tasks. As a result, 

countries subject to more rapid population aging are also characterized by faster adoption of 

automation technologies. One implication of this is that the impact of demographic change 

may be different in advanced and emerging economies, since the former are typically further 

ahead in the transition towards older societies than the latter. As recognized by Acemoglu and 

Restrepo (2017), however, this evidence is not sufficient to establish a causal relationship 

between the adoption of robots and the absence of significant negative effects of population 

aging on economic growth.  

In what follows, the possible differences between advanced and emerging economies, 

as well as the role played by automation, are investigated within the context of a 

comprehensive analysis of the relationship between demographic change and labor 

productivity growth.     
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3. Data and empirical methodology 

Building on the empirical methodology adopted by Aksoy et al. (2019), this paper relies on 

annual data over 1961-2018 for a panel of 90 countries (35 advanced and 55 emerging 

economies) to investigate the effects of demographic change on labor productivity growth.2 

Our focus on labor productivity growth is a key departure from studies investigating the effects 

of changes in the population age structure on output growth. As mentioned, though providing 

valuable insights, studying empirically the link between demographics and GDP (or per-capita 

GDP) growth does not allow distinguishing properly between the effects of demographic 

change on working-age population growth and labor productivity growth. This blurs the 

picture of the link between demographics and growth performance.  

The large panel dataset considered in our study provides several benefits. In particular, 

the time-series and cross-sectional dimension of the data helps in identifying the effects of the 

low-frequency demographic variation, as it allows exploiting the within-variation resulting 

from countries being in and progressing through different stages of the demographic transition 

over time (Aksoy et al., 2019). Moreover, the large dimension of the panel improves estimation 

efficiency and allows an assessment of the different impact of demographic change even when 

considering the subpanels of advanced and emerging economies. 

We adopt a simple growth specification whereby, as well as demographic change, labor 

productivity growth /𝑔$!0 depends on the growth of physical capital (𝑘) and human capital 

(ℎ) per worker, and the degree of knowledge intensity in the economy. To capture the latter, 

we rely on the Economic Complexity Index (𝑒𝑐𝑖) constructed by Hidalgo and Hausmann 

 
2 The list of countries included in our empirical analysis is reported in Table A.1 in the Appendix. 
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(2009), which measures the relative knowledge intensity of an economy by considering the 

knowledge intensity of the products it exports. As such, 𝑒𝑐𝑖 is a suitable proxy for countries’ 

relative endowments of knowledge and, thus, their potential for technological innovation. 

Since it is available for a large number of emerging economies, relying on the 𝑒𝑐𝑖 index has 

the additional benefit of extending significantly the time-series dimension of our panel with 

respect to possible alternatives such as patent applications data. A similar advantage is granted 

by the expected human capital index (EHCI) constructed by Lim et al. (2018), which is 

employed to obtain ℎ. The EHCI is defined for each birth cohort as the expected years lived 

from age 20 to 64 years and adjusted for educational attainment, learning or education quality, 

and functional health status, using rates specific to each time period, age, and sex. Lim et al. 

(2018) provide annual EHCI series for 195 countries over 1990-2016. The complete set of 

variable definitions and data sources is reported in Table A.2 in the Appendix.  

Following Aksoy et al. (2019), demographic features are modeled relying on the shares 

(denoted 𝑑)*+) of the following age-groups: the young dependents aged 0-19 (𝑑,-./); the 

workers aged 20-59 (𝑑0,-1/); the old dependents aged 60 and over (𝑑2,3). Population data 

were obtained from the World Population Prospects, the 2019 Revision (United Nations, 

2019). Being largely determined by past fertility decisions, the demographic variables are 

characterized by very low frequency variation with respect to labor productivity growth and 

its other annual determinants. As such, the 𝑑*)+4 𝑠 are assumed to be exogenous. To avoid 

perfect collinearity due to ∑ 𝑑)*+ = 15
)6. , the 20-59 age-group is excluded from the model. In 
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such a setup, significant coefficients on the two included 𝑑*)+4 𝑠 indicate that they are 

significantly different from the imposed zero coefficient on the 20-59 age group.  

The PVARX model is, thus, specified as follows: 

 

𝑌*+ = 𝑌*+-.𝐴. + 𝑌*+-0𝐴0+. . . 𝑌*+-!3.𝐴!-. + 𝑌*+-!𝐴! + 𝐷*+𝐵 + 𝜇* + 𝜀*+               (3) 

 

where	𝑖	𝜖{1,2, …𝑁} indicates countries, 𝑡	𝜖{1,2, …𝑇}  indicates time, 𝑌*+ is the	(1 × 4)  vector 

of endogenous variables /𝑔$!, 𝑘, ℎ, 𝑒𝑐𝑖0, 𝐷*+ indicates the (1 × 2) vector of exogenous age-

group population shares (𝑑,-./, 𝑑2,3), 𝜇* and 𝜀*+  are (1 × 4) vectors of country fixed effects 

and idiosyncratic error terms, respectively. The (4 × 4) matrices 𝐴. + 𝐴0+. . . 𝐴!-. + 𝐴! and 

the (2 × 4) matrix 𝐵 are the parameters to be estimated. The long-run equilibrium of the 

system is defined as follows: 

 

𝑌*+∗ = (𝐼 − 𝐴)-.𝜇* + (𝐼 − 𝐴)-.𝐷*+𝐵              (4) 

 

and the long-run impact of the demographic variables is given by 

 

𝐵89 = (𝐼 − 𝐴)-.𝐵                      (5) 

 

The long-run coefficients 	𝑏*)4 𝑠 in the matrix 𝐵89 reflect both the direct influence of 

demographics on each variable in the system and their indirect impact, working via the 
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feedback effects between the endogenous variables in the PVARX. The statistical significance 

of the 𝑏*)4 𝑠 can be ascertained via non-linear Wald tests. Finally, the long-run impact of 

demographics on each variable in the system can be expressed as 

  

𝑌*+: = (𝐼 − 𝐴)-.𝐷*+𝐵 = 𝐷*+𝐵89                    (6) 

 

Setting 𝑝 = 2 to save degrees of freedom, optimal lag order selection in the PVARX model is 

carried out relying on the consistent model and moment selection criteria (MMSC) proposed 

by Andrews and Lu (2001), which are based on Hansen’s (1982) J statistic of overidentifying 

restrictions.3 Further, to avoid undue influence from outliers, we exclude from the analysis 

annual observations in which 𝑔$! and/or 𝑘 are higher than 20% in absolute value. 4 

We implement the PRVAX approach using the full panel of 90 countries as well as the 

subpanels of advanced and emerging economies, to explore the possible presence of 

heterogeneity between country groups. The latter may arise, for instance, if demographic 

trends have a smaller impact in emerging than in advanced economies, which are further ahead 

in the demographic transition towards ageing societies. However, to the extent that 

technological change and policy responses are endogenous, the opposite may also be true. 

That is, in line with the arguments proposed by Acemoglu and Restrepo (2017, 2021), the 

economic downsides of ageing may be less significant in advanced economies since these have 

 
3 Setting the lag order to 3 produces qualitatively equivalent results for the variables capturing demographics in the full-
sample model. We also considered the inclusion of time effects in the model, but the MMSC selected the one-way fixed-
effect specification as more appropriate. 
4 Estimations performed including the outliers provide qualitatively equivalent results, and are available upon request.  
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already adopted appropriate policy measures and technological innovations to cushion their 

impact. Moreover, independently of which view may be correct, it is also possible that the 

significant results produced by the full-panel estimates may be entirely driven by strong 

demographic effects in only one group of countries—thus producing misleading evidence.  

 

4. Full-panel fixed effects and PVARX estimations 

This section presents and discusses the empirical evidence on the effects of demographic 

change on labor productivity growth. For comparison purposes, relying on the bias-corrected 

least squares dummy variables (LSDVc) estimator developed by Kiviet (1995, 1999) and 

extended to unbalanced panels by Bruno (2005), we start by running fixed-effects regressions 

of the following dynamic panel data model:  

 

𝑔$!(*,+) = 𝜌𝑔$!(*,+-.) + 𝛽.𝑘(*,+-.) + 𝛽0ℎ(*,+-.) + 𝛽5𝑒𝑐𝑖(*,+-.) + 𝜃.𝑑,-./(*,+) 		+

𝜃0𝑑2,3(*,+) + 𝜇* + 𝜀(*,+)                     (7) 

 

where the variables treated as endogenous in the PVARX setup are lagged one period.  

In line with expectations, the results in Table 1 indicate that a decline in the workers 

share of the population reduces labor productivity growth: both the 0-19 and the 60+ age-

group shares enter with a negative sign in all specifications, with one exception for the young-

dependents share in the advanced-economies estimation. However, the results provide 

evidence of only weak (in the full-panel specification) or no statistical significance for the 0-
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19 age-group share, while the coefficient on the old-dependents share is not significant for the 

emerging-economies subpanel. 

 

Table 1. LSDVc estimations: dependent variable 𝒈𝒍𝒑(𝒊,𝒕) 
Short-run coefficients 

 Full panel Advanced Economies Emerging Economies 

𝑔$!(*,+-.) 0.420** 0.214** 0.464** 

𝑘(*,+-.) -0.249** 0.109** -0.351** 

ℎ(*,+-.) 0.211* 0.303 0.183 

𝑒𝑐𝑖(*,+-.) -0.345 -0.613 -0.285 

𝑑,-./(*,+) -0.068^ 0.075 -0.074 

𝑑2,3(*,+) -0.214** -0.115* -0.135 

Long-run coefficients 

 Full panel Advanced Economies Emerging Economies 

𝑘(*,+-.) -0.429** 0.139** -0.655** 

ℎ(*,+-.) 0.363* 0.385 0.341 

𝑒𝑐𝑖(*,+-.) -0.595 -0.780 -0.532 

𝑑,-./(*,+) -0.117^ 0.096 -0.138 

𝑑2,3(*,+) -0.369** -0.146* -0.251 

    

No. of observations 1914 746 1168 

No. of countries 78 30 48 

Average T 24.50 24.9 24.3 

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level. Bootstrapped 
standard errors. 
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Though correcting for the well-known Nickel-bias (Nickel, 1981), the LSDVc 

approach does not take account of endogeneity issues and, relying on single-equation 

estimation, cannot capture the feedback effects between demographics, labor productivity 

growth and its other determinants. As such, the LSDVc estimator may not be well-suited for 

an assessment of the dynamic effects of demographics. Indeed, when the feedback channels 

stemming from demographic change are appropriately modeled in a PVARX framework, 

estimation results turn out to be substantially different. 

Table 2 reports the full-panel results from estimation of the PVARX model. The main 

finding from the analysis is that the estimates are consistent with significant short- and long-

term impacts of demographic change on labor productivity growth. In particular, the full-panel 

estimations indicate that for each percentage point increase in the share of the 0-19 age-group 

labor productivity growth falls by 0.255 percentage points in the long-run, while the same 

change in the 60+ age-group share has a negative long-run impact of -0.672 percentage points. 

These effects are larger than those associated with the corresponding short-run coefficients, 

owing to the significant feedback channels linking demographics to productivity growth. More 

specifically, the results indicate that both physical and human capital accumulation are 

significantly and negatively affected by a decline in the share of workers, while this is not the 

case for the Economic Complexity Index. Overall, the PVARX estimates appear to capture 

properly the long-term impact of demographic change—in particular, despite each element of 

the long-run coefficient matrix 𝐵89 being a function of 18 parameters (matrix 𝐴 and a column 

of matrix 𝐵), 6 out of 8 long-run demographic structure parameters turn out to be significant.  
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Table 2. PVARX estimations: full panel 

Short-run coefficients 

 𝑔$! 𝑘 ℎ 𝑒𝑐𝑖 

𝑔$!(*,+-.) 0.376** -0.082** 0.001 -0.003** 

𝑘(*,+-.) -0.282** 0.280** -0.014* 0.002 

ℎ(*,+-.) 0.255* -0.047 0.875** 0.009* 

𝑒𝑐𝑖(*,+-.) -3.092* -3.904** -0.052 0.941** 

𝑑,-./(*,+) -0.159** -0.273** -0.031** 0.001 

𝑑2,3(*,+) -0.419** -0.550** -0.049** 0.004 

Long-run coefficients 

 𝑔$! 𝑘 ℎ 𝑒𝑐𝑖 

𝑔$!(*,+-.) - -0.064** 0.002 -0.001* 

𝑘(*,+-.) -0.452** - -0.019* 0.000 

ℎ(*,+-.) 0.408* -0.037 - 0.002^ 

𝑒𝑐𝑖(*,+-.) -4.951* -3.045** -0.070 - 

𝑑,-./(*,+) -0.255** -0.379** -0.249* 0.014 

𝑑2,3(*,+) -0.672** -0.764** -0.391** 0.063 

     

No. of observations 1747 Lags 1  

No. of countries 76 GMM instruments 1/5  

Average T 22.99    

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level. 

 

As for the remaining variables, human capital accumulation is found to have a 

significantly positive impact on labor productivity growth while, capturing cross-sectional 
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variation in the panel, 𝑒𝑐𝑖 enters with a significantly negative coefficient—in line with the 

hypothesis that emerging economies, typically characterized by a lower level of economic 

complexity, tend to converge toward the labor productivity levels of advanced economies over 

time. The one puzzling result, consistent with the full-panel LSDVc estimates in Table 1, is 

that physical capital accumulation enters with a significantly negative sign in the 𝑔$! equation. 

This is, however, in accordance with results in Aksoy et al. (2016) which provide evidence of 

a significantly negative impact of lagged investment on output growth.5 

To sum up, the full-panel PVARX estimations provide robust support to the 

hypothesis that demographic change exerts significant effects on labor productivity growth 

and, more specifically, indicate that the impact of population ageing is strongly negative. As 

mentioned, however, these results may hide some heterogeneity between country groups 

which may affect the robustness of the estimates presented in Table 2. This issue is addressed 

in what follows, by carrying out separate PVARX estimations for advanced and emerging 

economies.            

 

4.1 PVARX estimations for advanced and emerging economies 

Table 3 and Table 4 report the PVARX estimates for, respectively, the subpanels of advanced 

and emerging economies.6 The main outcome is that, as is the case for the full-panel results in 

Table 2, the 0-19 and 60+ age-group shares enter with a negative sign and turn out to have a 

 
5 As in Aksoy et al. (2016), we find a strong positive contemporaneous correlation between the 𝑔!" and 𝑘	residuals. 
6 The advanced-economies estimation includes the oil price as an additional exogenous regressor, since this turns out to 
be significant in the labor productivity growth equation. 
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statistically significant impact on labor productivity growth both for advanced and emerging 

economies.  

            

Table 3. PVARX model: Advanced Economies 

Short-run coefficients 

 𝑔$! 𝑘 ℎ 𝑒𝑐𝑖 

𝑔$!(*,+-.) 0.199* -0.184** -0.003 0.007** 

𝑘(*,+-.) 0.100* 0.509** 0.002* 0.005** 

ℎ(*,+-.) 0.937* -0.803* 0.617** 0.058** 

𝑒𝑐𝑖(*,+-.) -5.411* -3.847^ -0.388 0.978** 

𝑑,-./(*,+) -0.584* -0.269 -0.013 -0.017 

𝑑2,3(*,+) -0.475* -0.476* -0.045 0.012 

Long-run coefficients 

 𝑔$! 𝑘 ℎ 𝑒𝑐𝑖 

𝑔$!(*,+-.) - -0.204** -0.053 0.001* 

𝑘(*,+-.) 0.124^ - 0.034 0.001* 

ℎ(*,+-.) 1.169* -0.892* - 0.009* 

𝑒𝑐𝑖(*,+-.) -6.752* -4.273^ -6.128 - 

𝑑,-./(*,+) -0.729* -0.548 -0.034 -0.742 

𝑑2,3(*,+) -0.593* -0.969* -0.118^ 0.542 

     

No. of observations 682 Lags 1  

No. of countries 30 GMM instruments 1/3  

Average T 22.73    

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level. 
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Table 4. PVARX model: Emerging Economies 

Short-run coefficients 

 𝑔$! 𝑘 ℎ 𝑒𝑐𝑖 

𝑔$!(*,+-.) 0.461** -0.043^ 0.000 -0.004** 

𝑘(*,+-.) -0.466** 0.164** -0.010 0.004^ 

ℎ(*,+-.) 0.027 0.173^ 0.857** 0.009* 

𝑒𝑐𝑖(*,+-.) -3.044^ -4.273** -0.095 0.954** 

𝑑,-./(*,+) -0.256** -0.361** -0.039* 0.002 

𝑑2,3(*,+) -0.733* -0.920** -0.125* 0.007 

Long-run coefficients 

 𝑔$! 𝑘 ℎ 𝑒𝑐𝑖 

𝑔$!(*,+-.) - -0.029 0.000 
 -0.001* 

𝑘(*,+-.) -0.863** - -0.011 0.001 

ℎ(*,+-.) 0.051 -0.117^ - 0.002 

𝑒𝑐𝑖(*,+-.) -5.643 -2.915** -0.098 - 

𝑑,-./(*,+) -0.475** -0.432** -0.276* 0.043 

𝑑2,3(*,+) -1.358* -1.102** -0.870* 0.160 

     

No. of 
observations 1062 Lags 1  

No. of countries 46 GMM 
instruments 1/4  

Average T 23.09    

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level. 

 

Interestingly, the long-run coefficient on 𝑑2,3 turns out to be appreciably smaller for 

the advanced-economies subpanel than in the case of emerging economies. This finding is 
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consistent with the hypothesis put forward by Acemoglu and Restrepo (2017) and suggests 

that in advanced economies, which lie further ahead in the demographic transition, the 

adoption of automation technologies may have reduced the economic impact of aging—we 

explore this hypothesis more formally in the next section. Comparison of the results for the 

human capital equation in the PVARX model suggests that this is the main channel explaining 

the different impact of population ageing in the two country groups. Specifically, while in 

advanced economies a one percentage point increase in the old-dependents share lowers ℎ by 

0.12 percentage points in the long-run (and the relevant coefficient is significant only at the 

10% level), the associated effect is a fall of 0.87 percentage points in the case of emerging 

economies. Meanwhile, the impact of 𝑑2,3 on physical capital accumulation turns out to be 

of a similar magnitude in advanced and emerging economies and, as for the full panel results, 

there is no evidence of a statistically significant effect on 𝑒𝑐𝑖. Taken at face value, these results 

suggest that economies where population ageing is more advanced appear to have dealt with 

the associated negative effects on productivity primarily by softening the impact on human 

capital accumulation. 

Contrary to 𝑑2,3, the long-run coefficient estimate on 𝑑,-./ is smaller in the emerging-

economies regression than it is for advanced economies—and in this case, differently-sized 

feedback effects on both physical and human capital accumulation appear to play a role.  This 

result is consistent with employment rates for the population in ages 0-19 being higher in 

emerging economies than in advanced economies, where a larger share of young dependents 

are involved in education and, as a result, either do not work or have occupations with lower 
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productivity than the average employee in the workers age-group. As such, a one percent rise 

in 𝑑,-./ has a larger impact on aggregate labor productivity in advanced economies.   

Focusing on the labor productivity growth equation, it can also be noted that the 

coefficient on physical capital turns out to be significant and positive for the advanced-

economies subpanel, while it remains negative in the case of emerging economies—thus 

suggesting that the puzzling finding noted for the full-panel estimations is entirely driven by 

the emerging-economies subpanel. Moreover, while entering with the expected signs in both 

estimations, 𝑒𝑐𝑖 and ℎ turn out to be significant only for advanced economies—an outcome 

in line with the hypothesis that knowledge and human capital accumulation play a more 

prominent role as engines of growth in the latter group of countries than in emerging 

economies.  

Overall, while reinforcing the view that demographic change has significant effects on 

labor productivity growth, the PVARX estimations for the subpanels of advanced and 

emerging economies also suggest that the relative importance of the various channels 

underpinning this relationship is different across these two country groups. 

 
 

4.2  The role of robots 

In this section, we explore formally the hypothesis that the adoption of automation 

technologies reduces the negative impact of aging and, more generally, unfavorable 

demographic change on labor productivity growth. Our approach relies on the use of a proxy 

for the degree of automation, based on the number of industrial robots per one thousand 

employees and denoted 𝑟𝑜𝑏𝑠(*,+), which we use to extend the benchmark PVARX model 
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specification.7 To construct 𝑟𝑜𝑏𝑠(*,+) for 63 economies in our panel over 1993-2015, we rely 

on annual data on industrial robots obtained from the International Federation of Robotics 

(IFR). The IFR’s estimates of robot stocks are based on the somewhat unconventional 

assumption that the service life of a robot is exactly 12 years.8 Thus, following Graetz and 

Michaels (2018), we make use of an alternative measure of annual robot stocks. This is 

constructed using IRF data on robot deliveries and the perpetual inventory method, assuming 

an annual depreciation rate of 10% and setting the initial robot stock measure as equal to the 

corresponding estimate provided by the IFR. We conduct robustness checks on our estimates 

assuming a depreciation rate of 5%, as well as relying on the measure of robot stocks based 

on the IRF method—the results, reported in tables A.3 and A.4 in the Appendix, remain 

robust.  

 The PVARX model is extended by introducing the following additional regressors: 

𝑟𝑜𝑏𝑠(*,+), which is treated as endogenous; the interaction terms between 𝑟𝑜𝑏𝑠(*,+-.) and the 

two demographic shares, denoted 𝑟𝑜𝑏𝑠(*,+-.)_𝑑,-./(*,+) and 𝑟𝑜𝑏𝑠(*,+-.)_𝑑2,3(*,+). The 

interaction terms are treated as exogenous in the PVARX setup, since they result from the 

product of a predetermined variable and an exogenous variable, while 𝑟𝑜𝑏𝑠(*,+-.), 𝑑,-./(*,+) 

and 𝑑2,3(*,+) are all controlled for in the PVARX model specification. This ensures that 

𝑑,-./(*,+) and 𝑑2,3(*,+) are independent of 𝑟𝑜𝑏𝑠(*,+-.) as well as potentially omitted variables, 

 
7 The methodology follows Graetz and Michaels (2018), who indicate that this quantity-based approach is more reliable 
than attempting to measure “robot services”, owing to the high level of aggregation of the robot price data. 
8 This implies that the depreciation rate goes from 0 over the first 12 years of service use to 100% on the first day of the 
13th year. 
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so that estimates of the coefficients on the interaction terms will be consistent (Nizalova and 

Murtazashvili, 2016).  

To illustrate how this model extension changes the interpretation of the results, 

consider the PVARX specification for the 𝑔$!(*,+) equation with a lag order of 1: 

 

𝑔$!(*,+) = 𝜌𝑔$!(*,+-.) + 𝛽.𝑘(*,+-.) + 𝛽0ℎ(*,+-.) + 𝛽5𝑒𝑐𝑖(*,+-.) + 𝛽B𝑟𝑜𝑏𝑠(*,+-.) +

𝜃.𝑑,-./(*,+) + 𝜃0𝑑2,3(*,+) + 𝜑.𝑟𝑜𝑏𝑠(*,+-.)C!"#$(&,() + 𝜑0𝑟𝑜𝑏𝑠(*,+-.)C*!+(&,() + 𝜇* + 𝜀(*,+)   (8) 

                

The overall impact of demographic change now depends on the degree of automation. 

Specifically, the short-run effects on 𝑔$!(*,+) of changes in the young and old population shares 

are given by, respectively, 𝜃. + 𝜑. ∙ 𝑟𝑜𝑏𝑠(*,+-.) and 𝜃0 + 𝜑0 ∙ 𝑟𝑜𝑏𝑠(*,+-.). That is, for given 

estimates of the relevant parameters, the impact of demographics will change with a varying 

degree of automation, as proxied by 𝑟𝑜𝑏𝑠(*,+-.). The long-run coefficients can be obtained as 

usual, relying on estimates of the autoregressive parameter 𝜌. That is, the long-run impact of 

changes in the young and old population shares are given by, respectively: 𝜃.89 + 𝜑.89 ∙

𝑟𝑜𝑏𝑠(*,+-.), where 𝜃.89 = 𝜃. (1 − 𝜌)⁄  and 𝜑.89 = 𝜑. (1 − 𝜌)⁄ ;  𝜃089 + 𝜑089 ∙ 𝑟𝑜𝑏𝑠(*,+-.), 

where 𝜃089 = 𝜃0 (1 − 𝜌)⁄  and 𝜑089 = 𝜑0 (1 − 𝜌)⁄ . 

Estimates from the extended PVARX model are reported in Tables 5.A and 5.B, where 

we focus solely on the short- and long-run effects of demographic change and automation.9 

 
9 A full set of results is available upon request. For ease of exposition, rather than variable names as in the previous tables, 
the first column on the left in Table 5 refers to the relevant parameter definitions.   
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Table 5.A. PVARX estimations, extended model: full panel, short-run estimates 

Short-run estimates 

 𝑔!" 𝑘 ℎ 𝑒𝑐𝑖 𝑟𝑜𝑏𝑠 

𝜃# -0.607** -0.701** 0.016 0.050 -0.008^ 

𝜑# 0.064 0.035 0.001 -0.009* -0.016 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -0.486* -0.635** 0.018 -0.012 -0.038^ 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -0.405 -0.590* 0.019 -0.023^ -0.059^ 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -0.586** -0.690** 0.016 0.002 -0.013^ 

𝑟𝑜𝑏𝑠(%,')
0%	345677  2.02 3.75 - 6.05 - 

      

𝜃8 -1.669** -1.772** 0.018 0.029 -0.019 

𝜑8 0.097^ 0.064 -
0.001 -0.005* -0.004 

𝜃8 + 𝜑8 ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -1.486** -1.650** 0.015 0.019 -0.026 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -1.364** -1.570** 0.014 0.012 -0.030 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -1.638** -1.752** 0.017 0.028^ -0.020 

𝑟𝑜𝑏𝑠(%,')
0%	345677  7.80 12.96 - 16.21 - 

      

No. of observations 1173 Lags 1   

No. of countries 58 GMM instruments 2/3   

Average T 20.22     

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level; 𝑟𝑜𝑏𝑠(%,')
)*+, is the 

mean value of 𝑟𝑜𝑏𝑠(%,') in 2015, equal to 1.89; 𝑟𝑜𝑏𝑠(%,')
)*+,_+./ is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 

for advanced economies, equal to 3.16; 𝑟𝑜𝑏𝑠(%,')
)*+,_*)* is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 for 

emerging economies, equal to 0.32; 	𝑟𝑜𝑏𝑠(%,')
0%	345677 indicates the cutoff level of 𝑟𝑜𝑏𝑠(%,') for which 

the relevant estimates become not significant at the 5% level; 𝑟𝑜𝑏𝑠(%,') constructed assuming a 10% 
depreciation rate for the stock of robots. 
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Table 5.B. PVARX estimations, extended model: full panel, long-run estimates 

Long-run estimates 

 𝑔!" 𝑘 ℎ 𝑒𝑐𝑖 𝑟𝑜𝑏𝑠 

𝜃#9:  -0.596** -0.505** 0.155 0.018 0.014^ 

𝜑#9: 0.063 0.025 0.010 -0.031* 0.029** 

𝜃#9: + 𝜑#9: ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -0.477* -0.457** 0.174 -0.041^ 0.070** 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -0.398 -0.425* 0.187 -0.080* 0.107** 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -0.576** -0.497** 0.158 0.008 0.023** 

𝑟𝑜𝑏𝑠(%,')
0%	345677  2.38 3.93 - - 0.05 

      

𝜃89: -1.638** -1.276** 0.170 0.104 0.034 

𝜑89: 0.095* 0.046 -
0.012 -0.019* 0.007 

𝜃89: + 𝜑89: ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -1.459** -1.189** 0.148 0.068 0.047* 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -1.339** -1.130** 0.133 0.044 0.055** 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -1.609** -1.261** 0.166 0.098 0.036 

𝑟𝑜𝑏𝑠(%,')
0%	345677  8.63 13.60 - - 1.00 

      

No. of observations 1173 Lags 1   

No. of countries 58 GMM instruments 2/3   

Average T 20.22     

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level; 𝑟𝑜𝑏𝑠(%,')
)*+, is the 

mean value of 𝑟𝑜𝑏𝑠(%,') in 2015, equal to 1.89; 𝑟𝑜𝑏𝑠(%,')
)*+,_+./ is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 

for advanced economies, equal to 3.16; 𝑟𝑜𝑏𝑠(%,')
)*+,_*)* is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 for 

emerging economies, equal to 0.32; 	𝑟𝑜𝑏𝑠(%,')
0%	345677 indicates the cutoff level of 𝑟𝑜𝑏𝑠(%,') for which 

the relevant estimates become not significant at the 5% level; 𝑟𝑜𝑏𝑠(%,') constructed assuming a 10% 
depreciation rate for the stock of robots. 
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Starting with the 𝑔$!	equation, we can see that the short- and long-run coefficient 

estimates on 𝑑,-./(*,+) and 𝑑2,3(*,+) (i.e. 𝜃., 𝜃0, 𝜃.89, 𝜃089	) are all negative and significant, as 

usual. However, the coefficient estimates on the interaction terms (i.e. 𝜑., 𝜑0, 𝜑.89, 𝜑089) turn 

out to be positive. This outcome is in line with the expectation that robot adoption reduces 

the impact of unfavorable demographic change on labor productivity growth. In particular, 

considering the effects of automation in relation to population ageing, the coefficient 𝜑089 

indicates that each additional robot per one thousand employees boosts 𝑔$! by about 0.1 

percentage points in the long-run. 

 

Table 6. Descriptive statistics for 𝒓𝒐𝒃𝒔(𝒊,𝒕) in 2015 
 No. of observations Mean SD P5 P50 P95 
All economies 63 1.895 3.207 0.002 0.477 7.144 
       
Advanced economies 35 3.157 3.857 0.023 2.274 13.883 
       
Emerging economies 28 0.318 0.501 0.000 0.088 1.049 
Notes: SD is the standard deviation; P5 is the 5th percentile; P50 is 50th percentile (median); P95 
is the 95th percentile. 

 

Since the impact of demographics changes with a varying degree of automation, it is 

useful to consider some examples. One convenient benchmark is given by the average degree 

of automation in our panel, which we measure as the mean number of industrial robots per 

one thousand employees in 2015—the last year with available data—which is defined as 

𝑟𝑜𝑏𝑠(*,+)DEFG and equal to 1.89 (Table 6). As such, the estimate 𝜃.89 + 𝜑.89 ∙ 𝑟𝑜𝑏𝑠(*,+)DEFG indicates 

that, for the average economy in our panel, a one percentage point increase in the share of the 

young population is associated with a 0.48 percentage-point fall in labor productivity growth 
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in the long-run. At about -1.46 percentage points, the impact of ageing—measured by 𝜃089 +

𝜑089 ∙ 𝑟𝑜𝑏𝑠(*,+)DEFG—is about three times bigger, as well as strongly statistically significant. Note 

that the corresponding estimates are larger for emerging economies than for advanced 

economies. This is due to a significantly lower degree of automation characterizing the former: 

for emerging economies, the mean value of 𝑟𝑜𝑏𝑠(*,+) in 2015—denoted 𝑟𝑜𝑏𝑠(*,+)
DEFG_EDE—was 

0.32, and thus about one tenth of the equivalent statistic for advanced economies 

(𝑟𝑜𝑏𝑠(*,+)
DEFG_FIJ= 3.16).        

Given the above, a second example which provides useful insights addresses the 

following question: Since greater automation appears to reduce the negative effects of 

unfavorable demographic change on labor productivity growth, what is the value of  𝑟𝑜𝑏𝑠(*,+) 

for which this impact becomes not statistically significant? In Table 5, this value is indicated 

by 𝑟𝑜𝑏𝑠(*,+)
1%	MNOPQQ, where the level of statistical significance selected is 5%. Our findings 

suggest that, for the impact of ageing on 𝑔$! to be not statistically significant, the number of 

robots per thousand employees must be 8.63 or higher—a threshold achieved by only 3 

countries in our panel in 2015, i.e. Germany, Japan and Republic of Korea. For the share of 

young workers, the estimated 𝑟𝑜𝑏𝑠(*,+)
1%	MNOPQQ is equal to a much lower 2.38, a mark reached 

by 17 out of 63 economies in our panel in 2015. This is in line with the view that automation 

is substantially more valuable to ageing societies than to younger ones. One possible 

explanation is that robots are typically characterized by higher complementarity 

(substitutability) with older (younger) workers (Battisti and Gravina, 2021). 
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To sum up, the empirical analysis in this section provides qualified support to the 

hypothesis that automation reduces the negative impact of unfavorable demographic 

change—in particular, population aging—on labor productivity growth.    

 

5. Conclusions  

The relationship between demography and growth has for a long time been a topic of interest 

for economists. Departing from much of the literature, which focuses primarily of the direct 

channel linking demographic change to GDP or per-capita GDP growth via its effects on 

working-age population and labor force growth, this paper investigates the link between 

demographics and labor productivity growth. 

The empirical analysis relies on a PVARX estimation framework, and data for a large 

panel of advanced and emerging economies over 1961-2018. We find robust evidence of 

demographic effects, with increases in both the young- and old population shares affecting 

negatively labor productivity growth. Disaggregating the analysis by country groups reveals 

interesting differences between advanced and emerging economies. In particular, the impact 

of ageing is lower in advanced economies, which are further along in the demographic 

transition towards older societies. This is in line with the view put forward by Acemoglu and 

Restrepo (2017, 2021), which suggests that the impact of population ageing in advanced 

economies may be less significant due to endogenous technological change leading to the 

adoption of labor-saving innovations. We further investigate this hypothesis, by extending the 

benchmark model to assess whether automation plays a role in cushioning the effects of 

demographic change. Our findings indicate that robot adoption significantly reduces the 
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negative impact of aging and, more generally, unfavorable demographic change on labor 

productivity growth. 

The evidence uncovered in this paper on the link between demographic change and 

productivity brings strong support to the notion that ageing societies will find it increasingly 

harder to improve living standards. In economies where demographic change is (or is 

projected to become) a drag on growth, policy should focus on how to boost the productivity 

of an ageing labor force, as this will be crucial to support living standards in the future. Our 

findings show that one way to achieve this objective is via greater automation of production 

processes, which can compensate for the negative impact of ageing on productivity growth.  
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Appendix 

 
Table A.1. Country groups  

 
Advanced Economies  

 
Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, 
Germany, Greece, Hong Kong, China, Iceland, Ireland, Israel, Italy, Japan, Latvia, Lithuania, 
Luxembourg, Macao, China, Malta, Netherlands, New Zealand, Norway, Portugal, Puerto Rico, 
Republic of Korea, San Marino, Singapore, Slovenia, Slovakia, Spain, Sweden, Switzerland, 
Taipei,China, United Kingdom, United States. 

 
Emerging Economies 

 
Afghanistan, Algeria, Argentina, Armenia, Azerbaijan, Bangladesh, Bhutan, Brazil, Brunei, Bulgaria, 
Cambodia, Chile, Colombia, Côte d'Ivoire, Croatia, Dominican Republic, Ecuador, Egypt, El 
Salvador, Georgia, Hungary, India, Indonesia, Kazakhstan, Kyrgyz Republic, Laos, Lebanon, 
Malaysia, Maldives, Mexico, Mongolia, Morocco, Myanmar, Nepal, Nigeria, Pakistan, Panama, Peru, 
Philippines, People’s Republic of China, Poland, Romania, Russia, South Africa, Sri Lanka, 
Tajikistan, Thailand, Tunisia, Turkey, Turkmenistan, Ukraine, Uruguay, Uzbekistan, Venezuela, 
Viet Nam. 
Notes: Economies are defined as Advanced or Emerging following the World Economic Outlook 
classification (International Monetary Fund, 2021) 

 
 
Table A.2. Variables and data sources 
Variable Definition Source 
𝑔!" Percentage growth rate of 

labor productivity, 
constructed as real GDP per 
employee. 

CEIC; Penn World Table 9.0, Feenstra et al. (2015). 

𝑘 Percentage growth rate of 
capital stock at current PPPs 
(in mil. 2011US$) per 
employee. 

Penn World Table 9.0, Feenstra et al. (2015). 

ℎ Percentage growth rate of the 
effective human capital index 
(EHCI).  

Lim et al. (2018). 

𝑒𝑐𝑖 Economic Complexity Index. Observatory of Economic Complexity (https://oec.world). 

𝑑=>#? Percentage of the population 
aged 0-19. 

United Nations (2019). 

𝑑@=A Percentage of the population 
aged 60 and over. 

United Nations (2019). 

𝑟𝑜𝑏𝑠 Number of industrial robots 
per one thousand employees. 

International Federation of Robotics. World Robotics 
Statistics Database (accessed 23 March 2018). 
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Table A.3.A. PVARX estimations, extended model: full panel, short-run estimates. 
𝒓𝒐𝒃𝒔(𝒊,𝒕) constructed assuming a 5% depreciation rate for robot stocks 

Short-run estimates 

 𝑔!" 𝑘 ℎ 𝑒𝑐𝑖 𝑟𝑜𝑏𝑠 

𝜃# -0.586** -0.695** 0.020 0.004 -0.003 

𝜑# 0.029 0.019 0.005 -0.008* -0.004 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -0.511^ -0.646** 0.031 -0.018^ -0.014 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -0.461 -0.613^ 0.040 -0.033* -0.021 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -0.575** -0.688** 0.021 0.001 -0.004 

𝑟𝑜𝑏𝑠(%,')
0%	345677  2.51 4.32 - 4.18 - 

      

𝜃8 -1.555** -1.704** 0.018 0.029^ -0.008 

𝜑8 0.044 0.032 -0.001 -0.003* -0.005^ 

𝜃8 + 𝜑8 ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -1.441** -1.621** 0.016 0.022 -0.022 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -1.363** -1.564** 0.015 0.017 -0.031 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -1.538** -1.692** 0.018 0.028^ -0.010 

𝑟𝑜𝑏𝑠(%,')
0%	345677  12.98 21.41 - - - 

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level; 𝑟𝑜𝑏𝑠(%,')
)*+, is the 

mean value of 𝑟𝑜𝑏𝑠(%,') in 2015, equal to 2.59; 𝑟𝑜𝑏𝑠(%,')
)*+,_+./ is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 

for advanced economies, equal to 4.36; 𝑟𝑜𝑏𝑠(%,')
)*+,_*)* is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 for 

emerging economies, equal to 0.38; 	𝑟𝑜𝑏𝑠(%,')
0%	345677 indicates the cutoff level of 𝑟𝑜𝑏𝑠(%,') for which 

the relevant estimates become not significant at the 5% level; 𝑟𝑜𝑏𝑠(%,') constructed assuming a 5% 
depreciation rate for the stock of robots. 
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Table A.3.B. PVARX estimations, extended model: full panel, long-run estimates. 
𝒓𝒐𝒃𝒔(𝒊,𝒕) constructed assuming a 5% depreciation rate for robot stocks 

Long-run estimates 

 𝑔!" 𝑘 ℎ 𝑒𝑐𝑖 𝑟𝑜𝑏𝑠 

𝜃#9:  -0.581** -0.481** 0.197 0.015 0.009 

𝜑#9: 0.028 0.013 0.046 -0.029* 0.013 

𝜃#9: + 𝜑#9: ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -0.507* -0.448** 0.317 -0.061* 0.043 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -0.457 -0.425* 0.399 -0.113* 0.067 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -0.570** -0.476** 0.214 0.004 0.014 

𝑟𝑜𝑏𝑠(%,')
0%	345677  2.95 4.67 - 1.85 - 

      

𝜃89: -1.542** -1.180** 0.184 0.102 0.026 

𝜑89: 0.044 0.022 -0.008 -0.010^ 0.017** 

𝜃89: + 𝜑89: ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -1.429** -1.123** 0.162 0.077 0.070^ 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -1.351** -1.084** 0.147 0.060 0.099** 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -1.525** -1.172** 0.181 0.098 0.032 

𝑟𝑜𝑏𝑠(%,')
0%	345677  14.81 22.71 - - 2.69 

      

No. of observations 1173 Lags 1   

No. of countries 58 GMM 
instruments 2/3   

Average T 20.22     

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level; 𝑟𝑜𝑏𝑠(%,')
)*+, is the 

mean value of 𝑟𝑜𝑏𝑠(%,') in 2015, equal to 2.59; 𝑟𝑜𝑏𝑠(%,')
)*+,_+./ is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 

for advanced economies, equal to 4.36; 𝑟𝑜𝑏𝑠(%,')
)*+,_*)* is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 for 

emerging economies, equal to 0.38; 	𝑟𝑜𝑏𝑠(%,')
0%	345677 indicates the cutoff level of 𝑟𝑜𝑏𝑠(%,') for which 

the relevant estimates become not significant at the 5% level; 𝑟𝑜𝑏𝑠(%,') constructed assuming a 5% 
depreciation rate for the stock of robots. 
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Table A.4.A. PVARX estimations, extended model: full panel, short-run estimates. 
𝒓𝒐𝒃𝒔(𝒊,𝒕) constructed using IRF robot stock series  

Short-run estimates 

 𝑔!" 𝑘 ℎ 𝑒𝑐𝑖 𝑟𝑜𝑏𝑠 

𝜃# -0.573** -0.654** 0.021 0.005 0.004 

𝜑# 0.023 -0.008 0.015 -0.011* 0.003 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -0.514^ -0.674** 0.060 -0.023^ 0.011 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -0.475 -0.687^ 0.085 -0.041* 0.016 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -0.562** -0.657** 0.028 0.000 0.005 

𝑟𝑜𝑏𝑠(%,')
0%	345677  2.06 3.62 - 3.52 - 

      

𝜃8 -1.454* -1.544** 0.013 0.034^ 0.009 

𝜑8 0.062 0.023 0.008 -0.007* -0.005 

𝜃8 + 𝜑8 ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -1.295** -1.486** 0.034 0.017 -0.003 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -1.190** -1.448** 0.048 0.006 -0.011 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -1.426* -1.534** 0.016 0.031^ 0.007 

𝑟𝑜𝑏𝑠(%,')
0%	345677  7.88 12.90 - - - 

      

No. of observations 1173 Lags 1   

No. of countries 58 GMM instruments 2/3   

Average T 20.22     

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level; 𝑟𝑜𝑏𝑠(%,')
)*+, is the 

mean value of 𝑟𝑜𝑏𝑠(%,') in 2015, equal to 2.54; 𝑟𝑜𝑏𝑠(%,')
)*+,_+./ is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 

for advanced economies, equal to 4.22; 𝑟𝑜𝑏𝑠(%,')
)*+,_*)* is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 for 

emerging economies, equal to 0.44; 	𝑟𝑜𝑏𝑠(%,')
0%	345677 indicates the cutoff level of 𝑟𝑜𝑏𝑠(%,') for which 

the relevant estimates become not significant at the 5% level; 𝑟𝑜𝑏𝑠(%,') is constructed using the 
series for robot stocks provided by the IRF. 
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Table A.4.B. PVARX estimations, extended model: full panel, long-run estimates. 
𝒓𝒐𝒃𝒔(𝒊,𝒕) constructed using IRF robot stock series  

Long-run estimates 

 𝑔!" 𝑘 ℎ 𝑒𝑐𝑖 𝑟𝑜𝑏𝑠 

𝜃#9:  -0.584** -0.452** 0.230 0.014 -0.023 

𝜑#9: 0.024 -0.005 0.168 -0.031* -0.018 

𝜃#9: + 𝜑#9: ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -0.524^ -0.466** 0.657 -

0.065** -0.070 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -0.485 -0.475^ 0.940 -

0.117** -0.101 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -0.574** -0.455** 0.305 0.000 -0.032 

𝑟𝑜𝑏𝑠(%,')
0%	345677  2.26 4.19 - 1.57 - 

      

𝜃89: -1.484** -1.068** 0.141 0.096 -0.059 

𝜑89: 0.064 0.016 0.091 -0.019* 0.030 

𝜃89: + 𝜑89: ∙ 𝑟𝑜𝑏𝑠(%,')
)*+, -1.322** -1.028** 0.372 0.048 0.018 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_+./  -1.215** -1.002** 0.524 0.017 0.068 

𝜃# + 𝜑# ∙ 𝑟𝑜𝑏𝑠(%,')
)*+,_*)*  -1.456** -1.061** 0.181 0.088 -0.046 

𝑟𝑜𝑏𝑠(%,')
0%	345677  8.47 14.28 - - - 

      

No. of observations 1173 Lags 1   

No. of countries 58 GMM instruments 2/3   

Average T 20.22     

Notes: **, * and ^ indicate, respectively, significant at the 1%, 5% and 10% level; 𝑟𝑜𝑏𝑠(%,')
)*+, is the 

mean value of 𝑟𝑜𝑏𝑠(%,') in 2015, equal to 2.54; 𝑟𝑜𝑏𝑠(%,')
)*+,_+./ is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 

for advanced economies, equal to 4.22; 𝑟𝑜𝑏𝑠(%,')
)*+,_*)* is the mean value of 𝑟𝑜𝑏𝑠(%,') in 2015 for 

emerging economies, equal to 0.44; 	𝑟𝑜𝑏𝑠(%,')
0%	345677 indicates the cutoff level of 𝑟𝑜𝑏𝑠(%,') for which 

the relevant estimates become not significant at the 5% level; 𝑟𝑜𝑏𝑠(%,') is constructed using the 
series for robot stocks provided by the IRF. 

 


