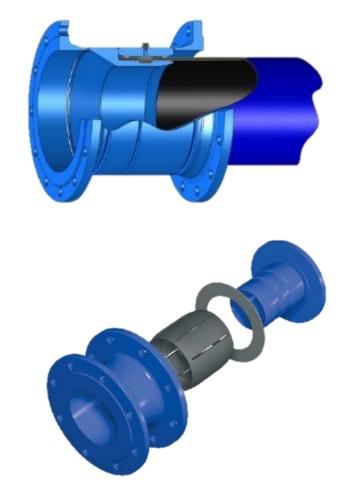


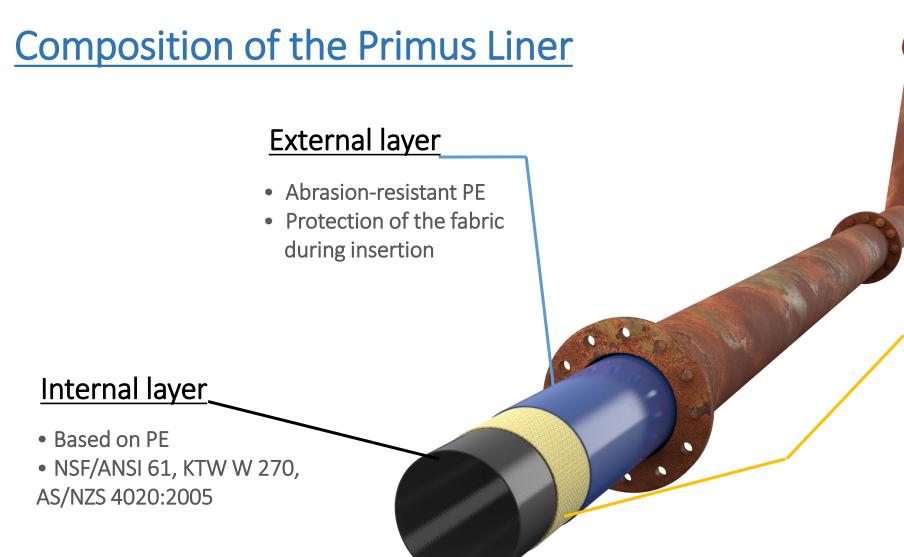
Primus Line Company Introduction

- Part of the Werner Rädlinger Group
 - RW Energy
 - Maschinen- und Stahlbau
 - Primus Line
 - BBZ Schwandorf
- Founded in 2001
- Worldwide offices
 - Primus Line Inc.
 - Primus Line CA Inc.
 - Primus Line Pty Ltd.
 - Primus Line (China) Ltd.
 - → Installation partners in more than 50 countries


The Primus Line® system

Components

Components of the Primus Line System



Flexible High-Pressure Liner

Patented End Fittings

Aramid fabric

- Accommodates the operating pressure independently from host pipe
- Wall thickness of 6 mm
- Liner is not glued to host pipe (no steaming or curing processes)
- Installed with annulus space

Product Portfolio

Primus Line® low pressure

single-layer hybrid design

single-layer Kevlar® design

Primus Line® high pressure

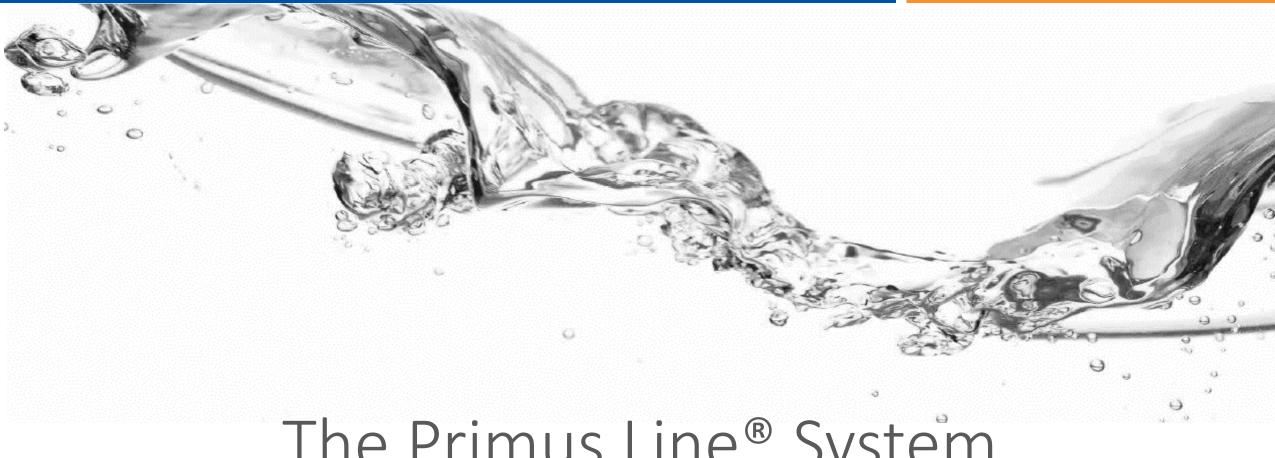
double-layer Kevlar® design

			OD	٠	10	buist	water	water	OD		10	buist	water	water	oil/gas	oil/gas	OD	,	10	buist	water	water		oil/gas	
			mm	mm	mm	bar	bar	kg/m	mm	mm	mm	bar	bar	kg/m	bar	kg/m	mm	mm	mm	bar	bar	g/m	bar	kg/m	
	Primus Line® DN 150		134	6.0	122	63	25	2.1	134	6.0	122	140	56	2.2	35	2.4									
	Primus Line® SD 150	•	150	6.0	138	54	20	2.4	150	6.0	138	120	48	2.4	30	2.7	160	8.0	144	206	82	3.3	51	3.6	
	Primus Line® DN 200		182	6.0	170	47	18	2.9	182	6.0	170	100	40	3.0	25	3.3	192	8.0	176	173	69	4.0	43	4.4	
	Primus Line® SD 203	•	203	6.0	191	42	16	3.3	203	6.0	191	84	33	3.4	21	3.8									
	Primus Line® DN 250		237	6.0	225	38	15	3.8	237	6.0	225	75	30	4.0	18	4.4	250	8.0	234	128	51	5.3	32	5.8	
	Primus Line® SD 261	Þ	261	6.0	249	30	12	4.2	261	6.0	249	64	25	4.4	16	4.9									
	Primus Line® DN 300		284	6.0	272	30	12	4.6	284	6.0	272	64	25	4.8	16	5.3	294	8.0	278	110	44	6.4	27	6.9	
	Primus Line® DN 350	•							314	6.0	302	50	20	5.2	12	5.9									
	Primus Line® DN 400								354	6.0	342	46	18	6.0	11	6.7	364	8.0	348	82	32	8.1	20	8.8	
	Primus Line® DN 450	•							408	6.0	396	40	16	7.0	10	7.8									
on is	Primus Line® DN 500		-		-	-		-	454	6.0	442	40	16	7.7	10	8.6	-	-	-	-	-		-		

burst MOP weight MOP weight OD

INTERNAL. This information

Performance & Testing


- ➤ Testing basis VP 643, June 2004 Flexible, fabric-reinforced plastic inliners and corresponding connectors
- ➤ Verification of long-term strength according to DIN 16887 and DIN EN ISO 9080 in a series of up to 10,000 hour tests extrapolated to 50 years derived a fabric factor of 2.0
- ➤ An additional safety factor of 1.25 is included

Example DN 200-MD*							
Burst pressure	100 bar						
Lifetime factor	↓ /250 bar↓ /1.25						
 Safety factor water 	40 bar						

^{*}Straight pipe sections, without bends

The Primus Line® System

Installation Process

Installation agenda

1. Site preparation

Take pipeline out of service Create access pits

2. Pipe cleaning & CCTV

Pipe inspection with CCTV

Remove incrustations / protruding welds

Create free inner diameter

3. Installation of the system

Insertion and inflation of the liner
Installation of connectors

1. Site Preparation

Start-pit

Pipe diameter	Working space					
DN 150 – DN 200	min. 1.25 m					
DN 250 – DN 500	min. 1.75 m					

- Pipe cut in a 90 degree angle to pipe axis
- Pipe ID to be deburred and chambered
- Use of insertion roll to protect liner

Man-hole

> Excavation pit

1. Site Preparation

Intra-pit

Pipe diameter	Working space					
DN 150 – DN 200	min. 1.50 m					
DN 250 – DN 500	min. 2.00 m					

- Pipe cut in a 90 degree angle to pipe axis
- Pipe ID to be deburred and chambered

> Man-hole

> Excavation pit

1. Site Preparation

Destination pit

Pipe diameter	Working space	Pulling force	Exit angle			
DN 150 – DN 200	min. 1.25 m	< 3 tons	max. 30 degree			
DN 250 – DN 500	min. 1.75 m	> 3 tons	max. 10 degree			

2. Pipe Cleaning & CCTV

CCTV inspection goal:

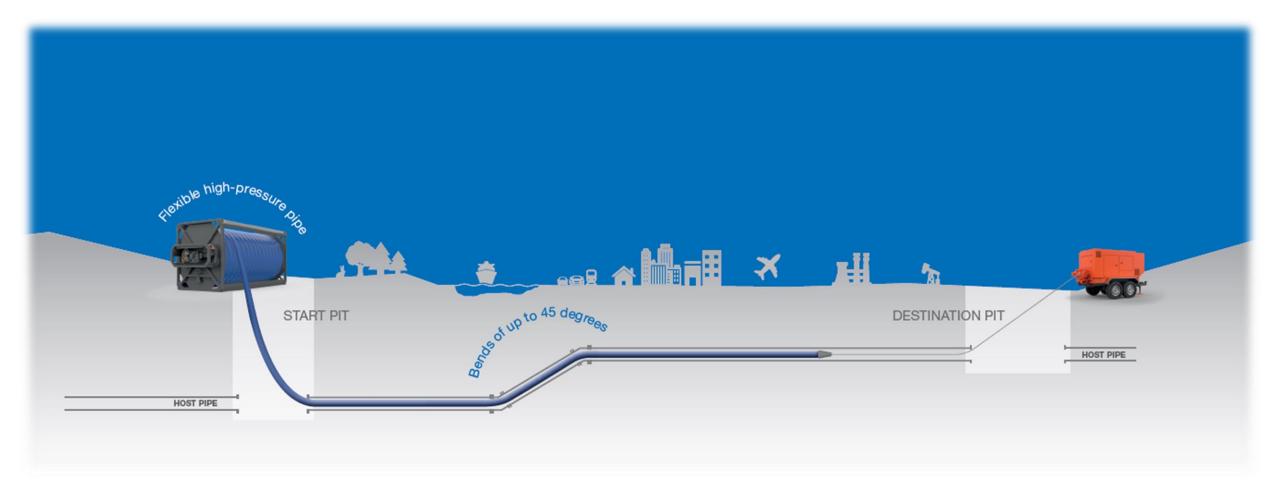
→ Determine cleaning needs

- Focus on reductions in cross-section caused by protruding obstacles (weld seams, fittings, pins)
- > Bends
- > Steps
- > 360 degree inspection of pipe joints
- CCTV used as a means to create the inital rope connection between pits

2. Pipe Cleaning & CCTV

Goal: Create a free inside diameter

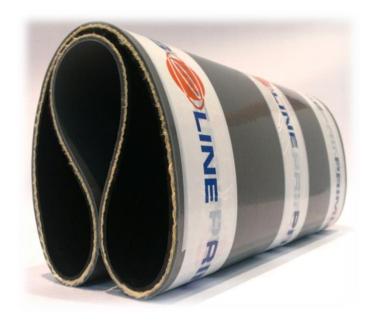
- > Cleaning requirements dependent on host pipe material
- > Subsequent CCTV inspection to verify free inside diameter



Liner insertion

Drum capacities

Diameter	Reel capacity
DN 150	up to 5,700 m
DN 500	up to 1,675 m



- \rightarrow Width: 1.40 m 11.00 m
- > Suitable for 20ft. and 40ft. Containers
- > Smaller reels via airfreight possible

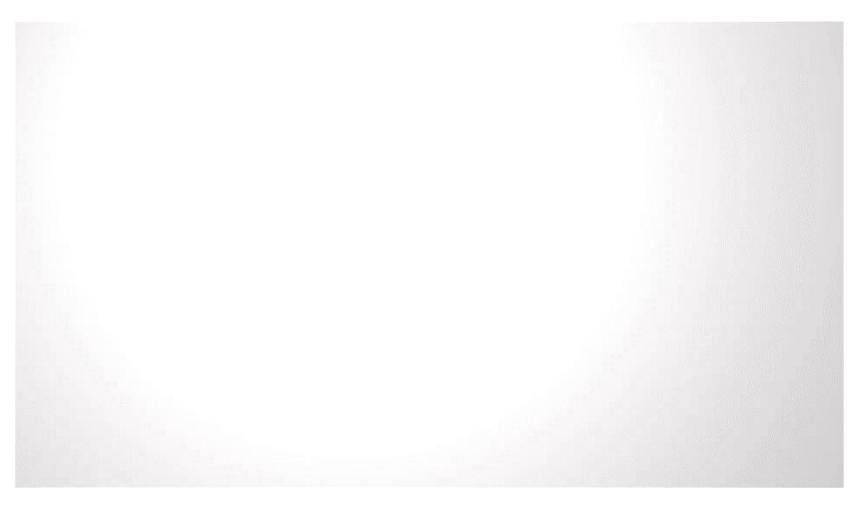
<u>Liner pre-folded in</u> <u>U-shape at factory</u>

Liner insertion

Reduce pulling forces to achieve long insertion lengths

Pulling forces up to 5 tons depending on reinforcement layer

Pulling forces up to 10 tons depending on reinforcement layer



U-shaped configuration during insertion

Ability to handle bends

Inflation process with compressed air

- ➤ Oil-free air for potable water
- ➤ Pipe stopper to close liner
- ➤ Pipe stopper with by-pass to inflate
- ➤ No heating, steaming, curing processes

Connector DN 500 with flange DN 600

<u>Different flange</u> standards

- > Pressure testing based on pressure loss method as described in DIN EN 805
- Disinfection according to the acknowledged rules of technology for disinfecting pipes made from PE

Primus Line Benefits in a Nutshell

- Long installation lengths with 1,000 m and more
- Ability to traverse around bends of up to 45 degree
- Fast installation with up to 600 m/h
- Small footprint and minimum equipment requirements on-site
- Fully factory produced product with no curing, steaming or adhesion processes on site

Case Study: Reocín, Spain

Rehabilitation of an asbestos cement trunk water main with a length of 10 kilometres

<u>Client:</u> <u>Type of construction measure:</u>

Rehabilitation of an asbestos cement trunk water main

Year of construction:

December 2016 – April 2017

Municipality of Reocín, Spain

Technical Details:

Material of host pipe Asbestos cement
Transported fluid Drinking water
Diameter of Host Pipe DN 250
Operating Pressure 7 bar

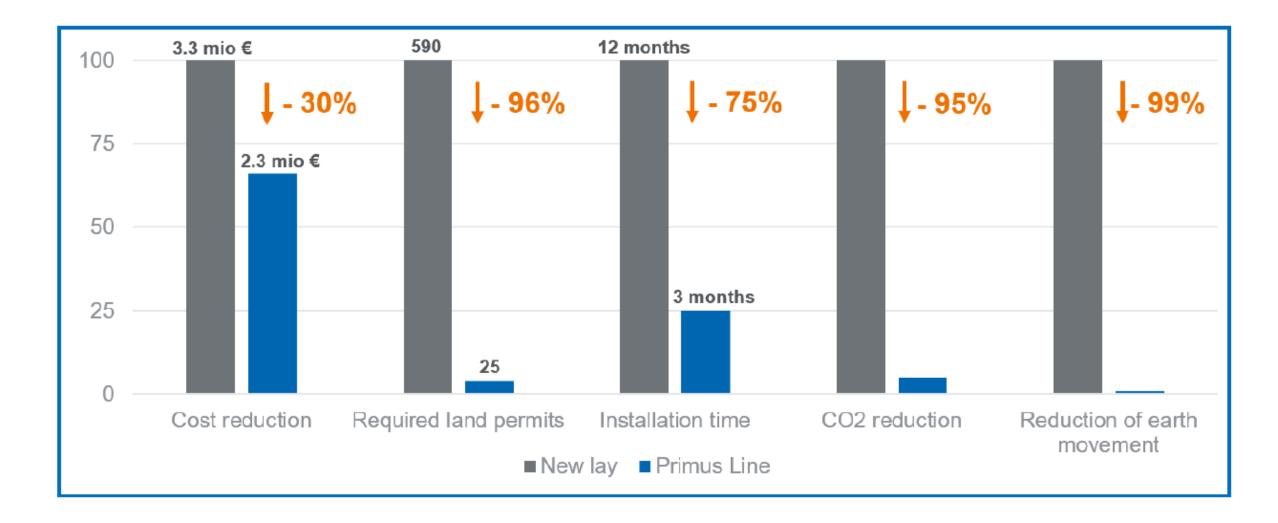
Primus Line System DN 250 PN15; DN

PN 18

20

10.345 m

200


Total Length

Number of sections

Installation Time 4 months

Case Study: Reocín, Spain

Case Study: Flensburg, Germany

Technical Details:

Material of host pipe

Transported fluid

Diameter of Host Pipe

Operating Pressure

Primus Line System

Total Length

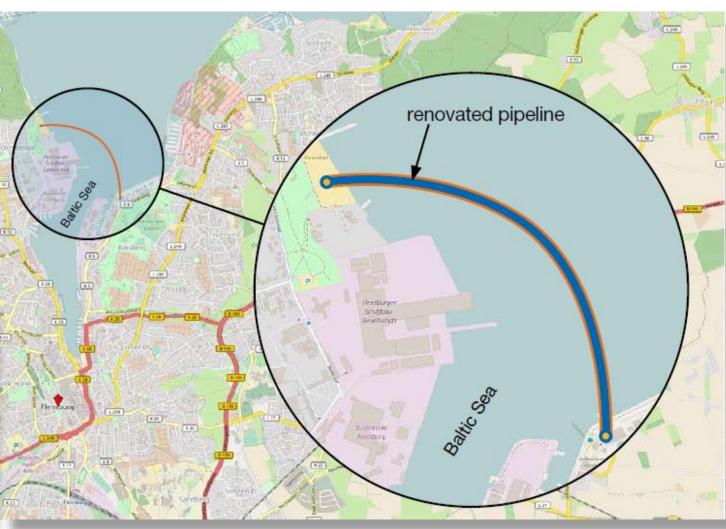
Installation Time

PE 80 from 1970

Potable water

DN 250

10 bar


DN 250 single-

layer

1240 m

8 working days

vith appropriate permission.

Case Study: Van Donh Island, Vietnam

Job Report

Technical Details:

Material of host pipe Steel, unlined Transported fluid Potable water

Diameter of Host Pipe DN 300
Operating Pressure 6 bar

Primus Line System DN 300 PN 12

Total Length 840 m

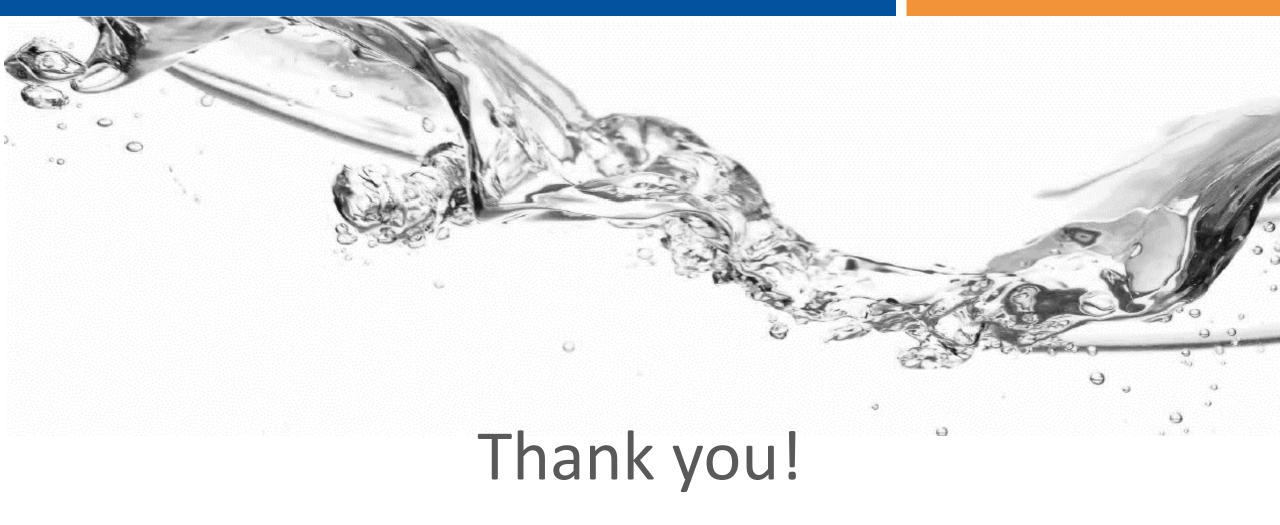
Sections 410 m, 170 m, 270 m

Installation Time 3 Weeks

Rehabilitation of DN 300 water pipes at Van Don bridge

Client:

Quang Ninh Water Company (QUAWACO)


Type of construction measure:

Rehabilitation of a DN 300 steel water main located at Van Don Island, Vietnam

Year of construction:

September 2019

