

Transformation towards green economy Post Pandemic COVID-19 as One of Indonesia Main strategies

Game Changer

As One of Indonesia Main Strategies Post Pandemic COVID-19, particularly as *game changer*, green economy is a **crucial matter** and necessary to be initiated immediately

Green Fiscal Stimulus is one of the solutions as part of Build Back Better with Low Carbon Development (B3-LowCarbon)

B3-Low Carbon is a notion to implement the Low Carbon Development (LCD) as the base in economic recovery.

With B3-LowCarbon, economic recovery will overcome short term challenges, as well as become **the first** *enabler* **of Indonesian transformation towards** *green economy*.

In Factual, the implementation of B3-LowCarbon may be done through **giving green fiscal stimulus** to all activities that support low carbon development in the context of economic recovery, **starting in 2022.**

Kebijakan penanganan Perubahan Iklim Sektor Pertanian di Indonesia dalam RPJMN 2020-2024?

Ministry of Agriculture

www.pertanian.go.id

Agricultural Development Strategic Policies to Encounter Climate Change Priority adaptation action, as an effort to achieve sustainable food sovereignty (primary priority of agricultural development)

Mitigation action: the development of environmentally friendly agriculture (low carbon)

Adaptation and mitigation action is synergized to achieve food self-sufficiency and better farmer welfare; mitigation is the co-benefit of adaptation, and adaptation is the entry point of mitigation

ADAPTATION ACTION

Adaptation Technology synergized with mitigation to enhance productivity (Campbel *et al.* 2011)

Sustainable productivity Enhancement

Adaptation capacity building

GHG Emission Reduction

FIRST NATIONALLY DETERMINED CONTRIBUTION

REPUBLIC OF INDONESIA

Indonesia is committed unilaterally to reduce GHG emission, according to 1st NDC 2016

Nov. 2016

Table 1. Projected BAU and emission reduction fr	om each sector categor	V

No	Sector	GHG	GHG Emission Level 2030			GH	G Emissi	Annual	Average		
		Level 2010*	(N	MTon CO ₂ e)		(MTon CO ₂ e)		% of To	tal BaU	Growth	Growth
			MTon CO ₂ e	BaU	CM1	CM2	CM1	CM2	CM1	CM2	(2010- 2030)
1	Energy*	453.2	1,669	1,355	1,271	314	398	11%	14%	6.7%	4.50%
2	Waste	88	296	285	270	11	26	0.38%	1%	6.3%	4.00%
3	IPPU	36	69.6	66.85	66.35	2.75	3.25	0.10%	0.11%	3.4%	0.10%
4	Agriculture	110.5	<mark>119.66</mark>	110.39	115.86	9	4	0.32%	0.13%	0.4%	1.30%
5	Forestry**	647	714	217	64	497	650	17.2%	23%	0.5%	2.70%
	TOTAL	1,334	2,869	2,034	1,787	834	1,081	29%	38%	3.9%	3.20%
8	* Inc	luding fugitiv		**In	cluding p	eat fire					

Notes: **CM1** = Counter Measure (*unconditional mitigation scenario*) **CM2** = Counter Measure (*conditional mitigation scenario*)

Main Emission Source in Agricultural Sector

CH4 from low-land rice field: water management & varity

CH4 from livestock (burp)

CH₄ from livestock manure/dung

N₂O from livestock manure/dung

N₂O from N fertilizer

CO₂ from fertilizer

CO₂ from dolomite

CO₂ from the burning of biomass

EMISSION SOURCE IN AGRICULTURAL SECTOR

BATAMAS = Society Livestock Biogas Program

Emission reduction = Methane avoidance from Batamas + energy substitution

Emission reduction from **methane avoidance** = Biogas amount x number of cow/cattle x gas volume from manure per day in biodigester x biodigester pressure x 365 days x conversion of GWP from CH_4 to CO_2e

Energy Substitution = substitution to LPG + substitution to kerosene Assumption: 90% of biogas produced is used for LPG substitution and 10% is used for kerosene substitution. Assumption is adjusted with field condition.

LPG Emission (substituted by biogas)		LPG Energy (ton CO ₂) = biogas volume (m³/thn) x 0,9 x 0,46
		x LPG heating value (GJ/kg) x 10 ⁻³ x LPG emission factor
		(ton CO ₂ /TJ)
Kerosene Emission	•	Kerosene (ton CO ₂) = biogas volume (m³/thn) x 0.1 x
(substitued by biogas)		0,62 x Kerosene heating value (GJ/liter) x 10 ⁻³ x Kerosene
		emission factor (ton CO ₂ /TJ)

Assumption

Number of livestock per BATAMAS = 75 heads

1 head of cow/cattle produces biogas = 2 m³/day; with pressure of 2 atm

Activity Data: BATAMAS unit amount

Average amount of livestock per BATAMAS unit

Organic Fertilizer Processing Unit (UPPO)

Emission Reduction = (Baseline emission – mitigation action emission) + carbon sequestration from organic fertilizer

Baseline Emission = CH_4 Emission from manure + N_2O direct emission from manure + N_2O indirect emission from manure

Mitigtion action emission = CH_4 emission from manure + N_2O direct emission from manure + N_2O

indirect emission from manure that cows/cattle are **NOT** included in the UPPO

Carbon sequestration from organic fertilizer = UPPO unit x Number of cows/cattle in the UPPO x manure and hay weight (kg/tahun) x kandungan C pupuk kandang (kg/year) x C in the soil x 44/12

Assumption:

Manure and hay weight per head of livestock = 14,9 kg/day C content in the organic fertilizer = 39,3% (Hartatik dan Widowati, 2006) C content in the soil = 0,67%/year (Mailard and Anger, 2013)

Activity Data:

- Number of UPPO unit
- Number of cows/cattle in every UPPO unit

Perbaikan kualitas pakan sapi perah

Ministry of Agriculture

www.pertanian.go.id

A. Methane Emission Baseline Calculation

CH_4 (ton/tahun) = Livestock population (by age) x Emission Factor x 10⁻³

Sub-category	GEI* (MJ/head/day)	CH4 EF (kg/head/year)	All beef cattle** (CH ₄ EF kg/head/year)		
Weaning (0-1 year) female + male	42.65±0.998	18.18±0.426			
Yearling (1-2 year) female + male	63.75±0.893	27.18±0.381	Ţ		
Young (2-4 year) female + male	97.98±1.112	41.77±0.474	33.14±0.757		
Mature (>4 year) female + male	131.11±4.632	55.89±1.975	(Widiawati et al., 2016)		
Imported (fattening) male	394.00±8.167	25.49±0.528			

€	Ministry of Agriculture	19	¹⁹ www.pertanian.go.id

B. Fermentation Enteric Emission After Feed Improvement Calculation

 CH_4 (ton/tahun) = \sum livestock that has been given feed x emission factor x (1- correction factor of legumes/concentrate) x 10⁻³

Emission reduction factor from legumes	0,035 ~ 3,5%	Emission reduction is relatively small but the			
Emission reduction factor from concentrates	0,045 ~ 4,5%	adaptation benefit (livestock production enhancement) is higher			

C. Emission Reductionafter Feed Improvement Calculation

 CH_4 (tones/year) = CH_4 baseline – (CH_4 improvement + CH_4 without improvement)

 Activity Data:

 • Livestock po;ulation

 • Percentage of livestock with the improvement of feed (legumes and concentrate)

 Ministry of Agriculture
 20

 www.pertanian.go.id

Emission From Paddy Fields

CH₄ Emission from low-land paddy field is influenced by:

- Planting period,
- Irrigation system
- Organic & anorganic fertilizer,
- > Soil types,
- Varieties

Activity Data:

- Low-land paddy field area (harvest area)
- Duration of flooding

Ministry of Agriculture

21

Low Emission Variety

Selection of variety: production quality and quantity, pests and diseases resistance, climate and salinity resistance. The selection is not on the lowCH₄ emission. EQUATION 5.1 CH4 EMISSIONS FROM RICE CULTIVATION

$$CH_{4 \text{ Rice}} = \sum_{i,j,k} (EF_{i,j,k} \bullet t_{i,j,k} \bullet A_{i,j,k} \bullet 10^{-6})$$

Emission factor and correction factor (emission reduction)

- Correction factor: flooded rice field = 1; less flooded = 0,71; intermittent = 0,46
- Emission factor $CH_4 = 1,601 \text{ kg/hectares /day}$

BALANCED FERTILIZING (N EFFICIENCY)

Baseline emission from fertilizer =

Direct N_2O emission from soil + Indirect N_2O emission from soil + CO_2 emission from urea fertilizer

Direct N_2O emission from soil + Indirect N_2O emission from soil + CO_2 emission from urea fertilizer

Emission from balanced fertilizing =

Assumption:

- 1.50% of harvest area of low-land paddy field that apply balanced fertilizing.
- 2. Fertilizer application recommendation: 250 kg of N and the threshold for fertilizer application of 280 kg of N → the difference of fertilizer application: 30 kg

Activity Data: Amount of N fertilizer used

Ministry of Agriculture

23

Water Surface Management for Agriculture on Peat Land

Water surface rice on Peat Land

 CO_2 Emission reduction: 1 ton of CO_2 /hectare/year for every 1 cm increase of MAT

Base on research of Wakhid et al. (2017) every 10 cm of water level drop on peatland will raise 7,3 tones of CO_2 emission/hectares/year

IoT Application of Water Management in Swamp Land

- Sensor : Water level height, Water quality (pH and Salinity)
- Actuator : Electric motor (solar energy) pipe 4-6" to open/close water flow from tertiary to quarter channel (to the field)
- Microprocessor: Interface Android

Prototype: "ELBOW AUTOMATIC TABAT SYSTEM DOOR" in process of patent

The Development of GHG Emission Reduction (mill tones Co2e) 2010 - 2020

	1	CH4 emission mitigation with the	0.578	0.52	0.699	0.427	0.213	0.107	0.053	0.29	0.19	0.1027	0.0513
		utilization of biogas particularly											
		from Batamas Program											
		Carbon sequestration enhancement	0.0038	0.0165	0.0176	0.21	0.21	0.21	0.25	0.056	0.058	0.0103	0.0134
		with the utilization of organic											
		fertilizer from UPPO Program											
TIGATION													
VALUE	3	Field school, SRI program for	11.5	15.46	13.76	13	15.64	1.56	6.65	7.75	11.91	11.0924	11.3617
FROM AGRI- ULTURAL SECTOR		organic rice, low emission rice											
		variety											
	4	Organic Village	-	-	-	-	-	-	-	-	0.008	0.0035	0.0014
	5	Quality improvement of feed for											
		cow/cattle										0.1038	0.0177
	6	Balanced fertilizer application										0.2088	0.2312
	7	Surface water management										7.8305	7.8305
		Reduction	12.0818	15.9965	14.4766	13.637	16.063	1.877	6.953	8.096	12.166	19.352	19.5072
	Sou	rce: MOA											

Ministry of Agriculture

MI

С

WATER HARVESTING: FARM POND

WATER SAVING TECHNOLOGI FOR HORTICULTURE using SOLAR SYSTEM

(Pump DC;drip)

Type-2 (AC Pump, Drip Irrigation)

Specification:

- Solar pannel 100 400WA
- Solar Water pump (AC/DC)
- Micro Irrigation for 0.5 1.0 ha
- Smart farming: timer, fertigasi, android
- Cost: 50 100 juta IDR/paket
- Application: coastal land, dry land, and tidal land

Type-

Type-1 (AC Pump, Bulk Irrigation)

Organic Fertilizer Processing Unit (UPPO)

Ministry of Agriculture

www.pertanian.go.id

