

We are a Filipino water company that aims to eradicate the **potable water** crisis in islands & coastal areas, and to strengthen clean water security across the country. We do this through a focus on:

- Fit-for-purpose technological innovation
- <u>Cost-accessibility</u> to the poorest populations
- Environmental <u>sustainability</u>

Over 42M Filipinos experienced water stress in 2020

¹ Water availability in the Philippines during the driest month (April). Image from http://worldwater.io March 2, 2021 13:24 PST+8

There are Three Main Causes of the Water Problem

Inadequate modern water infrastructures leading to water insecurity and interruptions

Clean water supply vulnerable to disruption and contamination, esp. during natural disasters.

- 2 Alarming depletion of freshwater resources Some negative effects of groundwater over-extraction are saline intrusion and decline of water quality.
- 3 Desalination & other seawater treatment methods traditionally expensive

Energy costs of treating seawater traditionally very expensive, can cost up to PHP 90 per 5 gallons ¹

1

50 centavos per liter or P500 per cubic meter with the desalination system right on [Pamilacan] island."

- Gov. Art Yap, Provincial Government of Bohol

NXTLVL Addresses The Three Main Problem Factors

Issue

- Inadequate modern water infrastructures leading to water insecurity and interruptions.
- 2 Alarming depletion of freshwater resources.
- 3 Desalination & other seawater treatment methods traditionally expensive.

Modular and Resilient, Award-Winning Design

Compact and rapidly deployable even to remote islands; Can operate even during typhoons & extreme weather conditions¹

NXTLVL Solution

Undepletable, Sustainable Resources.

Seawater is an abundant and consistent source. Solar power utilized to generate required energy.

Cost-Efficiency for the End-Consumer

Save 75% or more on power & electricity costs Incorporate potable water treatment & distribution facilities for ease of use

Hydra breaks through the Cost-Availability Barrier

Existing solutions trade off cost and quality/availability. NXTLVL solves both.

Availability – Accessibility – Quality

NXTLVL Hydra: Technology Benefits

Key Tech Features

- **5,000-88,000 liters per day** year-round of potable water from unlimited renewable source: the sea
- **100% solar-powered** for zero net energy costs
- Small footprint (<50sqm) modular systems
- Lowest cost of seawater or brackish water treatment at sub-100m³ per day scale through award-winning energy recovery device
- High quality output beyond WHO Standard
- Typhoon and extreme weather resilience
- **Turnkey**; localized supply chain & deployment for small islands
- Labor-efficient operations and potable water distribution model
- Remote monitoring and maintenance

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Tech Partners / Recognition

NXTLVL Systems in the Philippines

San Juan, La Union 11klpd, hybrid 60% solar, 30% grid Pampanga EWR 30 & EWR 50 Pamilacan, Bohol 5klpd, 100% solar

Tanza, Cavite 11klpd, hybrid 60% solar, 30% grid

Pandanon, Bohol 5klpd, 100% solar

NXTLVL Hydra Systems in Bohol

Locations

Housings

Capacities

Pop. served

Water Intake

Energy

Selling price per 5 gallon jug

Distribution channels

Pandanon Island Pamilacan Island

48 sqm concrete structures

5,000 liters per day

3,500 island residents

10 ft beach well

100% solar-powered

Php 5.00

Site walk-ins Distribution partners

In partnership with the Provincial Government of Bohol

NXTLVL Hydra System in La Union

Water Intake

90 ft deep beach well

Energy

Selling price per 5 gallon jug

Php 10.00

60-30% solar-grid hybrid

Distribution channels

Site walk-ins Distribution partners

Typhoon Ompong

Across the street

NXTLVL Hydra Site

NXTLVL Solution for Disaster Relief: Emergency Water Response System (EWR)

- Potable water from almost any source (lakes, streams, brackish water, sea water, etc.)
- Fully Solar-powered (no gen-set required)
- Rapid and simple deployment perfect for post-disaster relief
- Portable and high strength military grade casing
- Easy maintenance and reusability
- One EWR system can service 500 to 1000 people per day

Technical Features of EWR Systems

EWR30 EWR50 720 liters per day – 7.8 Gal/hour 1200 liters per day – 13.2 Gal/hour Capacity: Capacity: **Power Supply:** 12 VDC **Power Supply:** 12 VDC 240 W - 20 A **Consumption:** 110 W - 9 A**Consumption:** 48kg - 106 lb Weight: 38kg – 84 lb Weight: Membranes: n.2 2.5" x 21" Membranes: n.1 2.5" x 21" 50 mesh strainer – 5 micron melt blown 5" x 2.5" Filters: 50 mesh strainer – 5 micron melt blown 5" x 2.5" Filters: Inlet Hose: Inlet Hose: i.d. 16mm length 10mt i.d. 16mm length 10mt **Discharge Hose:** i.d. 16mm length 5mt **Discharge Hose:** i.d. 16mm length 5mt Permeate Hose: i.d. 16mm length 5mt Permeate Hose: i.d. 16mm length 5mt horizontal 10mt - vertical 1mt horizontal 10mt – vertical 1mt Suction Capacity: Suction Capacity:

	Capacity:	40 Ah
	Battery Type:	Lithium-ion (LiFoPO4)
	Stored Energy:	512 Wh
	Nominal Voltage:	12.8 V
EWR	Weight:	25kg
Powerbox	Safety Features:	Overload, Short - circuiting, Temperature
	Solar Panel Power:	120 Watt
	Solar Panel Voltage:	12 VDC
	Solar Panel Cells:	3×12
	Solar Panel Dimension (Unfolded):	1280mm x 540mm

Both EWR30 & EWR50 comes with an **EWR Powerbox** solar add-on for off-grid usage

NXTLVL EWR Case Study: Pampanga

A total of five EWR systems were deployed to three different municipalities in Pampanga (Sasmuan, Floridablanca, Lubao) for purposes of DRRM use by the LGUs. The EWR systems will **service up to 4500 Pampangeños** with high quality potable water in times of disaster.

On-site demo with NXTLVL Team

Testing of EWR box in a creek

Click here to see EWR in action

Engineering Leadership & Sample Project Timeline

	 Previous Experience: Construction Manager (Water and Sewage) Piping Mechanical Design Engineer (Water Treatment; Oil and Gas) 	PROJECT: SMALL SCALE DESALINATION PLANT					Month 1					N	2		Month 3					Month 4				
		SUBJEC	T: Work Schedule				W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W1 [·]	1 W12	W13	W14	W15	W16	W17	
		Item #	Description	Start	Finish	Days																		
		1	Planning, Document Submittals, Permits			30 <																		
		2	Civil Works			46																		
		2.1	Mobilization			5						*												
Ryan Pardiñas Engineering Manager		2.2	Building			43						┝												
		3	Well			5												+						
	 <u>Previous Experience:</u> Tender / Project Control Engineer (Water and Sewage) Piping Design Engineer (Oil and Gas) 	4	Mechanical and Electrical Works			15												+	+					
		4.1	Procurement			3												↔						
		4.2	Equipment Installation			5													H					
		4.3	Piping Installation			5													H					
		4.4	Tank Modification and Installation			5													\rightarrow					
		4.5	Electrical and Instrumentation Works			4													\mathbf{H}					
Randy Racal		5	Commissioning			1																		
Senior Project Engineer		6	Training			1																		

NXTLVL Water Partnerships

INTERNAL. This information is accessible to ADB Manag

vith .

Addresss: 2288 Chino Roces Avenue, Makati City, PH Website: <u>www.nxtlvlwater.xyz</u> E-mail: hello@nxtlvlwater.xyz

Miguel Francisco "Paco" P. Caparas Co-founder, Managing Partner paco@nxtlvlwater.xyz

Kim Limpahan Business Development <u>kimberly@nxtlvlwater.xyz</u> (+63) 917 336 4681

XTLVL Water Presentation

Paco Caparas, Co-Founder

NXTLVL Water

Dedicated to helping the 14M+ Filipinos who suffer from potable water scarcity, NXT LVL Water deploys unique modular turnkey solutions that produce high quality potable water from seawater and provide commerciallevel water distribution services in a highly cost-effective, fully renewablepowered (off-grid), weather & disaster resilient, environmentally sustainable and rapidly deployable manner.

Click video to learn more.