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It is predicted that by 2030 information tech-
nology could consume around 20% of global en-
ergy production and emit a similar proportion of 
global greenhouse gas emissions [1]. Computation 
is driven by CMOS transistor logic, and with de-
vice power density trending upward due to the end 
of Moore’s Law and Dennard Scaling [2], the need 
for alternative low-power logic devices is evident. 

The devices in this work [3] take advantage of 
the exceptional mobility of electrons in group III-
V semiconductors for both “n” and “p”-MOS 
equivalent operation in a single device, eliminating the compromises and challenges of hole-based conduction in 
p-MOSFETs. Furthermore, this novel structure, forming a single device field-effect inverter (FEI), halves the num-
ber of devices required for logic gates, reducing chip footprint and the number of interconnects. The FEI concept 
(Fig. 1) consists of two charge-accepting channel layers which sandwich a central electron reservoir. Applying a 
positive gate bias (+VG) pulls electrons into the top channel, whilst a negative gate bias (-VG) pushes electrons into 
the bottom channel, thus turning one channel on whilst the other remains off: the required complementary function 
for logic is achieved using only electrons. 1D nextnano++ [4] simulations of the design based on III-V semicon-
ductor alloys with ~6.1-Å lattice constant (InAs/InGaAs/GaSb/AlSb) and analysis of the carrier density integrated 
over the channel regions (Fig. 2) demonstrates operation. For zero gate bias, the electron density is only ~109  

cm-2, equivalent to ≤1 carrier in a 300-nm-by-300-nm de-
vice. Applying ±1.5 V bias there is ~1,000× increase in the 
electron density relative to the off-state, and contrast be-
tween top and bottom channels is even higher (of the order 
107). Minimal integrated hole densities are apparent across 
the entire voltage sweep (~1010 cm-2) which, aided by the 
reduced hole mobility, ensures only electrons are feasible 
for conduction.  

Work is currently ongoing testing fabricated 10- and 
20- µm devices with promising performance allowing 
demonstration of proof-of-concept FEI devices. 
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Fig.1 Concept of the FEI shown for electrons. Under zero gate 
bias (0 VG) electrons remain in the reservoir. Applying a gate 
bias (+VG/-VG) pulls/pushes electrons into the top/bottom chan-
nel respectively, thus achieving the complementary function re-
quired for a logic device. 

 
Fig. 2 Integrated charge carrier density calculated 
from 1D nextnano++ [4] simulation. Top (solid line) 
and bottom (dashed line) channels are shown for both 
electrons (blue) and holes (orange). Effective low 
voltage operation is demonstrated with 2-3 order of 
magnitude increase in integrated electron density 
from gate bias 0 V to ±1.5 V. Holes remain at a low 
background level throughout the voltage sweep. 
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